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Synopsis

The paper presents an assimilation of mathematical models and solutions

needed in order to develop computer based analysis of dynamic structures.

Using the variational formulation and a direct integration technique, a dynamic

finite element model is developed. Modal analysis of unknown displacements of

the structure, and the dynamic reduction of the structure are presented as

alternative solutions. A system of micro-computer based programs which apply

the presented solution techniques is described. The system of programs support

varying cross sections of frame members, application of static, harmonic and

non-harmonic loading conditions, and node displacements in the form of

uniform base motion or independent node movement.
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Introduction

Computer analysis of dynamic structures has for some time been limited to

mainframe computers. The importance of conducting a detailed analysis of any

structure is evaluated against access to, and the cost of using a mainframe

application to do that analysis. There are situations where analysis by

mainframe is not possible or is not justified. In such cases, solution by hand

may be impractical. There is a need to conduct rigorous analysis of dynamic

structures that are too simple to justify using mainframe applications and too

complicated to be solved by hand. Micro-computers are viewed as a possible

means of satisfying this need.

The large amounts of memory required by the techniques which enable dynamic

structures to be modeled in a form solvable by a digital computer have restricted

their implementation on micro-computers. However, these techniques continue

to be studied, refined, and combined with other techniques in the attempt to

develop an optimal solution. In addition, micro-computers with abilities to

address memory measured in the multi-megabytes are becoming widely available.

With improved techniques and larger memory capacities, one can expect that

rigorous analysis of simple dynamic structures will soon be done conveniently

and inexpensively using micro-computers.

Toward that end, the mathematical formulations required to model dynamic

structures on a micro-computer are synopsized. Combining these methods with

a technique of reducing the complexity and number of resulting equations then

results in an useful engineering analysis tool.

The paper first illustrates how the Finite Element Method is used to discretized

the problem and express it in a matrix form. Next, the Newmark method of direct

integration is used to simplify resulting integrations with respect to time.

Further simplification of the equations are made possible through formulation

and solution of the eigenvalue problem. Finally, a method for reducing the

number of equations which must be solved is presented.

To show how the above techniques are applied to a micro-computer, a system of

programs is described. The programs are capable of solving the resulting

equations for dynamic analysis of undamped linear plane frame structures using

any of the presented solutions. Flow diagrams and program listings are provided.

Pas>-*1



www.manaraa.com



www.manaraa.com

CE-685 Larry Goshorn

Term Project August 1985

Finite Element Formulation

The Finite Element method is widely used in the analysis of structures. It has

the ability to systematically describe a structure in a matrix form which is

easily applied to computer computation. Understanding the methods by which the

matrix form is arrived at is important in understanding the capabilities and

limitations of a computer application which employs the method.

The derivations presented in this section draw heavily from a text by J. N. Reddy,

"An Introduction to Finite Element Method" (see the bibliography).

Discretization

This model will describe a structure as an assemblage of two node frame

elements. Each node will have three degrees of freedom, horizontal, vertical,

and rotational movement. Mathematically, the frame element will consist of a

superimposed one-dimensional bar element and a two-dimensional beam element.

The bar and beam element are superimposed in a manner that assumes the

transverse and rotational deflections/loads are independent from axial

deflections/loads.

Bar Element

The governing differential equation for the bar element is:

82u 8
m— +

3t2 8x

8u
AE—

8x
F(x,t) =

Where F(x,t) is an axial forcing function which varies linearly with x, m is the

mass per unit length, A is the cross sectional area, and E is the modulus of

elasticity. Damping has been ignored.

The variational formulation is found by integrating the governing equation

against a test function over h, the length of a bar element.
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-h

o

a2u a
m

3t2 8x
AE

3u

8x
F(t) dx =

Integrating:

.h

82u 8v 8u
vm— + AE + vF(x,t)

8t2 8x 8x
dx - vAE

8u

8x

x=h

=

x=0

The last term of the above expression corresponds to the natural boundary

conditions at either end of the bar element and will be denoted as P
lt

the axial

force on the left side and P2 , the axial force on the right side of the element.

Assume that u is interpolated by a linear expression of the form:

2

u = £uj(t)+i(x)

]=1

Assuming that u and t can be separated, for any given time t>0, the above

expression is substituted for u, and v = ^(x). The matrix formulation results:

[Ml{u''} + [Kl{u} = {F(t)}

Where (') means differentiation with respect to t and:

.h -h

Mjj =
J

m+j+j dx k

i]

d*j d*j
AE

—

!—
' dx

dx dx

Fj = jF(x,t) dx P;(t)

Note that in the physical meaning of the above expressions, Mjj K|s do not vary

with time. While Fj and Pj(t) vary with time, solutions will be based on the

specific values of F(x,t) and Pj(t) at given points in time.
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The interpolation functions t, (for i=l to 2) must be sufficiently differentiate,

independent of one another, complete, and must satisfy the essential boundary

conditions. The expressions ti
r

%\ + a2x and t2
~ a

i

+ a2x are sufficiently

differentiate, independent, complete, and values for the coefficients can be

found to satisfy the essential boundary conditions. Below the Seredipity method

is used to derive the interpolation functions:

The boundary conditions are:

i(x=0) = 1

Mx=h) = o

t2(x=0) =

*2(x=h) = l

Solving for coefficients:

i(0) = a, = 1

Wh) = 1 a2h =

* 2(h)
= a, =

<f»2(h)
= a2h

=

i = 1
+ -

h
h =

-

These interpolation functions are used in the above expressions for Mj«, Kj., and

Fj to derive the element matrices. In the derivation, the cross section of the

element and the distributed force F(x,t), are allowed to vary linearly with x. The

modulus of elasticity, was assumed to be constant.

E f I -I

[Kl =— (A, A2)

2h .-11

[Ml=—
12

(3m
t
+ m2) (mj + m2)

(m, + m2 ) (m
t
+ 3m2)

{F} =
2f, f, P.

+ -

f, 2f2 "P2
- *

Where the subscripts indicate values at the left and right end of the bar element.
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a2u d2

m— + —
8t 2 8x2

El

32u

8x2
F(x.t) =

Where m is the mass per unit length, F(x,t) is a distributed transverse forcing

function. Integrating the governing equation against a test function over the

domain of the beam element gives

,h

m
82u

at2

82

8x2
El

82u

8x2
F(x.t) dx =

Integrating:

Jo

82u 8v 8
vm

8t2 3x 8x
EI

82u

8x2
vF(x,t) dx+v-

3x
El-

8 2
u

8x 2

x=h

=

x=0

The last term of the above expression corresponds to the shear (natural boundary

condition) at either end of the element and will be denoted as Qj (shear at the

left end) and Q3 (shear at the right end).

Integrating the second term again:

82u 82v 82u
+ EI—r—r + vF(x.t)

8t2 8x2 8x2
dx+vQ

x=h

8v 82u

-EI-
8x 8x 2

x=0

x=h

=

x=0

The last term of the above expression corresponds to the moment at either end

of the element (natural boundary condition), and will be denoted as Q 2
(moment

at the left end) and Q4 (moment at the right end).
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The displacement is again interpolated Dy an expression of the form:

2

u= S Uj(t) *i(x)

1=1

Substituting the above expression for u, and v=<f»j(x) results in the matrix

formulation

[nHu } ^[KHul = {F(t)}

Where (') means differentiation with respect to t and

,h h d2^ d2^.

Mji = m+i+i dx Kjj = AE ' [ dx
,J J« '

J ,J J„ fix2 ny2J
' J

o <b2 d*2

.h

Fj = tjF(x.t) dx Qj(t)

The interpolation functions tj (for i=l to 4) must be sufficiently differentiable,

independent of one another, complete, and must satisfy the essential boundary

conditions. The expressions ^,=a
1

+ a2X + a3X2+ a4 x
3 and ^2 =a i

+a2x+a 3x2
+ a4 x3

are sufficiently differentiable, independent, complete, and values for the

coefficients can be found to satisfy the essential boundary conditions. Below

the Seredipity method is used to derive the interpolation functions.

The boundary conditions (
' denotes differentiation with respect to x):

*i(x=o) = i Mx=o)= o

<h'(x=0) =
. f2 '(x=0)

= -I

,(x=h) = t2 (x=h) =

1

,

(H=h) = f2 '0<=h)
z

Solving for the coefficients:

*,(0) = a, = 1 +2 (0) = a, =

*r(0) = a2 = h'(0) = a2
=-1

tj(h) = l + a3h
2 a4h

3 = ft GO = -h a3h
2 a4 h

3
=

tl'(h) = 2a3h 3a4h
2 = f2 '(h)

= "1 * 2a3h * 3a4h
2 =

Page* 6
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r h2 h3

i

L2h 3h 2
J

a3

a4
i-

°

" h2 h 3
33 h

i r < >

.2h 3h 2
. a4 1

i = 1
- 3— 2—

h2 h3
* 2

= -x 2

h h 2

The boundary conditions (
' denotes differentiation with respect to x):

3 (x=0) = *4 (x=0) =

3 '(x=0) = 4'(x=0) =

* 3 (x=h) = 1 ^4 (x=h) =

*3 '(x=h) = t4'(x=h) = -1

Solving for the coefficients:

*3 (0) = ai =

*3 '(0)
= a2 =

3 (h) = a3h
2 a4h

3 = 1

3 '(h)
= 2a3h + 3a4h

2 =

i.

4 (0) = a, =

4*(0) = a2 =

^4 (h) = a3h
2 a4 h

3 =

4 '(h) = 2a3h 3a4h
2 =

h2 h3

2h 3h 2

33
= <

a4
-1

f 3 = 3 2—
h2 h3

*4 = ;
h h 2

These interpolation functions are used in the above expressions for Mjj, Kjs, and

Fj: to derive the beam element matrices. The cross section of the element and

the transverse loading function F(x.t) are allowed to vary linearly, but the

modulus of elasticity is held constant.
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"

6(1, + I2) -h(4I, 2I2) -6(1, * l 2 ) -h(2l, 4I 2 )

E

[K] =—
h3 (sym)

h2(3I, +\
2) h(4l, * 2!2)

6(1, * l 2 )

h 2
(l, • I 2 )

h(2l, 4I
2 )

h2 (I, * 3I 2 )

" h(10m
1
+3m2 ) -h2(15I, 7I2) h(9m, 9m2 ) h2(7m, 6m 2 )

1

[M] =—
830 (sym)

h3(5m, +3m2 ) -h2(6m, + 7m2 )

h(3m, 10m2 )

-h 3(m, m2 )

h2(7m, I5m2 )

h 3(3m, 5m2 ) .

15(f,-3f2 ) Qi

h

{F}=—

<

60

-h(3f, 2f2)

3(3f, 7f2)

+ <

Q2

Q3

h(2f, + 3f2 ) Q4

Frame Element

The bar and beam elements are now superimposed upon one another to form the

frame element. It is assumed that forces and displacements in the axial

direction and in the transverse direction are independent of one another. The

resulting element matrices are shown below.

[K] =

2h3

h
2(A,+A2 )

(sym)

-h
2(A,+A2 )

12(l,+l2 ) -2h(4l,+2l2 )

2h2(3l,+l2 )

h
2 (A,+A2 )

-12(1 ,+l2 )

2h(4l
1
+2l

2 )

12(1, +l2 )

-2h(2l,+4l
2

)

2h2(l,+l 2 )

2M2I
1
+4I

2 )

2ti
2
(l,+l2 )
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[M]=—
840

70h(3m
1
+m2) 70h(m^+m2)

-0h2r24h(10m|+3m
2 ) -2h/(15m

1

+7m
2 )

h
<3(5m^+3m2)

54h(mj+m2) 2h2(7m j-^rr^)

-2h2(6m
1

+7m2) -Shrbni+m?)

70h(m
1

+m2)

(sym) 24h(3m ,+ 10m
2 ) 2h2(7m| + 15m

2 )

h
3(3m]+5rri2)

10h(2f, + f2 ) p,

I5h(rr3f2) Qi

1

{F} =—

<

60

-h2(3f, 2f2)

ion(r, 2f2)

+ -

Q2

-Pf

3h(3f, + 7f2 ) Q3

h2(2f, 3f2)
.

°4

Assemblina Global Matrices

Prior to assembling the element matrices into the global matrices, the element

local coordinates must be converted to global coordinates. This is done by

premultiplying the stiffness and mass matrices with the following

transformation matrix. The element force matrix is premultiplied by the

transpose of the transformation matrix. The angle 9 is measured from the from

the positive x direction clockwise:

cose -sine

cose

(sym)

cose -sine

cose

1

When the element matrices are assembled, the internal element forces, P
lf Q,, Q2 ,

P2 , Q3 , and Q4 are canceled out by the internal element forces of adjoining

elements. There may, however, be externally applied loads at the nodes, if this
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is the case, they are added into the formulation as shown in the above expression

for the force matrix. Note however, that since the loads are applied directly to

the nodes, that the coordinate transformation is not appropriate.

Applying Essential Boundary Conditions

In the development of the mass and stiffness matrices, the shape functions were

developed in order to account for essential boundary conditions but essential

boundary conditions were never actually applied. As a result, the stiffness

matrix is currently singular and can not be inverted (ie, the problem can not be

solved as is). One consequence of this is that this configuration can not be used

to solve for displacements of structures which are not anchored in some way to

an immovable object (as an example an object floating in space). Application of

essential boundary conditions constrain the structure and the stiffness matrix

becomes non-singular.

There are two approaches to apply the essential boundary conditions. Since the

displacement of a node in a particular degree of freedom is known, the

corresponding equation in the matrix formulation is simply changed to reflect

the known value. The Guass elimination scheme used to solve the simultaneous

equations will insure that the influence of the displaced node is properly

reflected thorough out the structure. This is the method used in the program

DynFEP. It has the advantage that all constrained nodes need not all move at

once or in the same directions, in addition rotations of individual nodes can be

investigated with this approach.

An alternate approach is described in the referenced text by Clough & Penzien.

The common approach used in earthquake analysis, is to drop the row and column

corresponding to the displaced/constrained node from the formulation, reducing

the number of simultaneous equations to be solved. Then effects of base motion

are added into the formulation. This is done by adopting a coordinate system

where the unknown displacements are relative to the movement of the base of

the structure. Then an inertial term is added to the right hand side of

appropriate equations. As an example, if the base of the structure experienced a

horizontal displacement, then an inertia term would be added to every equation

in the matrix formulation which pertained to horizontal displacements. In

matrix formulation an acceleration vector accounting for horizontal and vertical

movement is developed and premultiplied by the mass matrix to obtain the

inertia term, this column matrix is then added to the right hand side of the

Page*10



www.manaraa.com



www.manaraa.com

CE-685 Larry Goshorn

Term Project August 1985

equations.

Rotations are normally disregarded in this approach. First because earthquakes

seldom display any rotational components and second because the bookkeeping

chore is very burdensome. The inertia effect of a node rotation on another node

is proportional to the lever arm between the two nodes. Thus, for each node that

rotates the lever arm between it and all other nodes must be found in calculating

the inertia term. In addition, its very difficult to conceptualize the inertial

effects of one node on another when several nodes are rotating.

The DynFEP.uncouple/solve and DynFEP.reduce programs presented below are

formulated in the above manner.
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Time Approximations

The Finite Element Method provides a method of converting the differentials with

respect to x in the governing equations into a linear algebra problem suitable for

solution by computer. During the derivation it was assumed that displacements

with respect to space and time could be separated. We are now faced with

solving the resulting matrix differential equation in time.

[M]{u"} + [K]{u} = {F(t)}

In order to utilize a computer based solution, the above differential equation

must also be simplified to an algebraic form. The Newmark method of direct

integration is a commonly used technique to accomplish this. The Newmark

method is described in referenced texts by Reddy, Clough & Penzien, and Bathe &

Wilson. It is based on the following assumptions:

{u'}
t+At

= {u'}
t

+ [(1 - S){u"}
t

S{u"}
t+At

]At (1)

(u}
t+At

= {u}
t

+ {u'}
t
At + l(V2 - cx){u"}

t
<x{u"}

t+At
)At 2

(2)

Where ex and 8 are parameters that can control the integration accuracy and

stability. When 8=V2 and (x=V6 the above expressions correspond to a linear

acceleration assumption. When 8=V2 and <x
=,/4 above expressions correspond to

a constant-average-acceleration assumption.

Working with equation (2), acceleration for a new time increment can be

expressed in terms of current displacement and values from the last time

increment.

«{u"}
t+At

At = {u}
t+At

- {u}
t

- {u'}At - (V2
- o<){u"}

t
At

1 1 (V2
- ex)

{u "W = -73- <Mf*t " H) -— Mt 1""h
txAt^ <xAt «

{u
"
}
t+A t

= a i({u}t+At
" {uV " a2{u

'

}
t
" 3 l{u"\ (3)

Page^12



www.manaraa.com



www.manaraa.com

CE-685 Larry Goshorn

Term Project August 1985

Substituting equation (3) into the discretized equations of motion:

WKatfu)^ - Iu}
t
) - a2{u'} t

- a3{u"} t
) [Kl{u)

t+At
= {F)

t+At

(a^Ml + [K]){u}
t+At

= {F}
t+At [ni({u}

t
a2{u'} t

a3{u"} t
) (4)

Using the above equation the procedure for direct integration is as follows:

1) Knowing displacement, velocity, and acceleration from the last time

step (or from initial conditions), find displacements for next time step using

equation (4) above.

2) Using equation (3) find current acceleration.

3) Using equation (1) find current velocity.

4) Proceed to next time step.

The Newmark method is unconditionally stable for <x=V2 and S=V 4 and is

normally stable for <x=V2 and 6=V6 . In order to also insure accuracy of the

method, At should not exceed:

- min 2
A*max

"

* ^max
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Modal Analysis

The Finite Element Method and the Newmark method, are used above to convert

the differentials which govern movement of plane frame structures to a set of

simultaneous algebraic equations. These equations are then solved repeatedly in

small time steps to obtain the displacement response of the structure owr time.

Given this method of solution it should be obvious that any means to further

simplify the solution process will be valuable.

The texts by Clough & Penzien, and Bathe & Wilson present a widely used method

to uncouple the simultaneous equations so that they may be solved independently

of one another. The method involves expressing the equations of motion as an

eigenvalue problem, solving the eigenvalue problem, and then re-expressing the

equations of motion in a coordinate system which has been generalized by the

eigen vectors.

The Eigenvalue Problem

If the structure in question is in free vibration then the forces on the right hand

side of the equations of motion are equal to zero, [M]{u"} + [K]{u}={0}. The

solution for each degree of freedom is then {u} = {f}sin(a)t). Substituting this

solution into the equations of motion

-03 2 [M]{<p}sin(o)t) + [K]{<p}sin(a>t) = {0}

([K] -a) 2 [M]){<p}sin(wt) = {0}

Since sin(a)t) is not equal to zero for all t,

([K] -<D 2[M]){<p} = {0}

A non-trivial solution to this system of simultaneous equations exists only

when |[K] -o) 2[M]|=0. When this determinate is expanded, it results in an

algebraic equation of the n^ degree (where the dimensions of [K] and [M] are

n-by-n). The n roots to this equation, o>j (where 1=1, 2, . . ., n), represent the

frequencies of the n modes of vibration that are possible in the system. The
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associated eigen vectors, {<pj}, describe the relative displacements of the

structure nodes in the p& response mode. The total response is given by the sum

of the mode responses each multiplied by a currently unknown amplitude.

The eigen vectors are [K] and [M]-orthogonal. Thus {<pj}
T
[Ml{<pj} = [ri

n ], where

[M
n] is a diagonal matrix, and {<Pj}

T
[K]{<pj} = [K

n l, where [Knl is a diagonal matrix.

In addition Wj}
T
M{<pj}=[0l, and {<Pj}

T
[K]{<J)j}=[0] where i*j.

The advantage of the modal analysis is seen when a generalized coordinate

system is defined as {u}= [$]{£}. Where [*] is a matrix made up of the individual

eigen vectors. Premultiplying the original equations of motion by [<H
T and

substituting the generalized coordinate system into the equation of motion

results in:

[]T[M][*]K"} KfDCIftHt) = mT
{F(t)}

[r1
n]U"}

+ [K
nm} = [*l

T
{F(t)}

Stated in terms of the generalized coordinate system, the equations of motion,

are uncoupled. Since [Nn] and [Kn ] are diagonal matrices each equation in the

above system of equations is independent of the others.

Solution of the Eigenvalue Problem

Clough & Penzien describe a matrix iteration method originally developed by

Stodola to solve the eigenvalue problem. The eigenvalue problem is restated as

follows:

[K]{<pl = a>
2[M]{<p}

Rearranging:

KI^MM—lM
CO

2

The Stodola method consists of using a guessed trial mode shape,
(<Ptr ja|).

on

the left-hand side of the above equation to calculate a new guess on the
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right-hand side. The square of the frequency is obtained by dividing any

component of the new guess by the same component of the original guess. The

new guess will always be better then the old guess, and the process will

converge to the lowest mode or frequency.

Using the orthogonal properties of the eigenvectors it is possible to eliminate

the components of any particular mode from the total response of the structure.

By eliminating the first mode components from the total response it is possible

to use the above method to find the second mode response (since it would now be

the lowest). Extending this approach, succeeding modes can also be found.

Expressing a trial mode shape in terms of its modal components and then

premultiplying both sides by {<P|>
T
[Ml

n

Wtrial >
= 2 WjlAj = {<P,}A, + {<P2)A2 {<p3}A 3 {^n}An

i=l

W>i}
T[MH <

Ptrial>
= Wi>

TI»lW !
}A

1*{9,}
T
[ri]{f2}A2*" ff,}

T
mHfn>>Vi

Wi)
T
Dl]«trial }= WirtfflWilA,

Solving for Aj:

{<P ,}
T
[r1]{<Ptna i

}

A, =

WiFlMWil

Subtracting the first mode shape from the original trial mode shape results in a

new trial with no first mode components, {<p
(rja |

}.

(fiHftFini

Wtrtalto >
=
Atrial > " «i>A, = {<Ptrial 1 -

(ft)T[flWi)
Atrial I

This can also be expressed as {^trial )
=
I^Mftrial '» wnere:

WWTM
is,! = [1]

-
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The [S^ matrix is referred to as the first mode sweeping matrix. It has the

property that when multiplied by any trial vector it removes the first-mode

component. Sweeping matrices which remove more then one mode shape can be

constructed in a similar matter. As an example, a sweeping matrix which will

remove the first, second, and third mode shape components from a trial vector

would be constructed as follows:

(ft)(ft)
T[Ml {<P2H<P2 }

T
[r1] {f 3

}(cp
3
}T[n]

3
" W^rlM,} {<p2}

T[M]{<p2 }
~

{<p 3 }
T
[r1]{<p 3 }

The resulting Stodola matrix iteration model to find the fourth mode shape and

eigenvalue becomes:

[Kr 1 [n][53]{<p>
=— {<p}

The method of solution suggested by the above methods consists of the

following:

1) Find lowest mode shape and eigenvalue using the matrix iteration.

2) Using the newly calculated first mode shape eliminate the first mode

components.

3) Repeat the procedure for the next mode shape and eigenvalue.

Each successive mode shape is based on eliminating the previous mode's

components. According to Clough & Penzien, numerical roundoff errors which

allow any previous mode components to remain in the sweeping matrix are

accumulative. Thus in order for the sweeping matrix to perform effectively for

higher modes it Is necessary to retain a great deal of precision in calculating the

lower modes.

The eigenvalues and eigen vectors are now used to form the uncoupled equations

of motion. The Newmark method is applied to the resulting independent

equations. The independent equations are solved in the terms of the generalized

coordinates, {£}, while stepping through time. In each time step the real

displacement vectors are found from the relation {u} = [$]{£}•
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Reduction of the Equations of Motion

When the above methods are applied to real structures, very large matrices and

correspondingly large computer capacity are required to solve the resulting

equations. It is thus desirable to reduce the number of equations which must be

solved. In the study of structures it has been determined that only the first few

response modes contribute significantly to the overall response a structure. It

is therefore reasonable to ignore the higher modes of response if it will reduce

the number of equations to be solved.

Robert J. Guyan described such a method of reducing the number of equations to

be solved in a paper to the AIAA Journal. The method consists of a static

reduction of the structure. Working with the static description of the structure,

the matrices are partitioned by the nodes which will be retained in the solution

(referred to as the primary nodes), and the nodes which will be eliminated from

the formulation (referred to as the secondary nodes). It is assumed that no

external loads will be applied to the secondary nodes.

[Kpp] [KpS ]

[KSp] [KSS J

(up)'
t — ^

'

{fp}

<us) {fs}

This results in the following two matrix equations:

[KppHUpJ * [KpgHUg) = {fp}

[KgpHUp} [K
SS

1{U
S> = {fg} = {0}

(5)

(6)

Multiplying the second equation by lKpsl[Kss ]
-I

[KpgHKggr 1

iKgplIUp) * V^W^T' [KggHUg) = {0}

[KpgHKggr' [KgpHUp) * [KpgHUg} = {0} (7)
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Subtracting equation (7) from equation (5) gives:

[K*Hu
p
} = {f

p
}

Where [K*] is the reduced stiffness matrix, found by the following expression:

[K*l = [K
pp

] - [K
psl[Kssr' [Kgpl

In addition, from equation (7) a transformation matrix can be obtained to

convert between the primary and secondary displacement values.

iKpgMUg} = -iKpsHKggr
1 [^Kllp}

{Ug} = -[Kssr' [KgpMUp) = -iTMUp} (8)

Rearranging:

{u} =
[I] {Up}"

«
K

-[T] {Up}

The kinetic energy of the structure can be expressed as:

T = V2{u'}
T
[Ml{u'}

Substituting the above expression for {u} results in:

r iT
rn

T = V2 {u'
p
)
T

[II

-IT]

Wppl Wpsl

L lMSpl I«ssl

[II

[Tl

(u'p)
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Thus it can be seen that the reduced [M] can be expressed as:

[M*]= <

[I]

-m

Wppl WpS l [1]

-[Tl

Expanding the above expression and substituting the expression for [T] we obtain

the simplified expression for [M*]

:

[M*]= [Mpp]- iMpglK^]" 1 [Ksp ] - [ Kps][Kss ]

_1
([Msp

]- O^JfJ^JT^ KgpD (9)

The above method has reduced the mass and stiffness matrix of the structure and

therefore the number of equations which must be solved. However, the

transformation matrix [T] used to find the displacement of secondary nodes has

ignored any inertial effects. The exact expression for [T] is found by expressing

the eigenvalue problem in the partitioned form:

[Kpp] [KpS ]

[KSp] [KSS J
1

1

l%)

J [ i%)
• - 0>2

' [Mppl IMpsl
'

.[«sp» l"ssl-

= {0}

Working with the second partitioned matrix equation the exact transformation

matrix for the eigen vectors is obtained:

DUKftJ + IKccHfJ " 0)
2
[r1qn ]{(pn } - Ci>2[M l{fj = {0}

^sp JlT p
J ^ss" T s sp'^p J 'SS ,lT S J

(a>
2lncJ - [kqJ){<Po> = to 2[ru] - [KqnW<JU'SS

J ^SS sp J >sp J

[T] = (<D
2[MCC ] - [KcJ)'

1

((D
2[nsp l - [K

sp ])
'SS

J *SS
J

Note that if the inertial terms in the above expression are neglected, the same

transformation matrix developed earlier, based on a static derivation, is

obtained. The above expression, however, involves an eigenvalue based on the

complete set of equations and requires that an inversion of the (o)
2
[ri

ss ]
- [K

SSD

term be found for each eigenvalue.
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Charles Miller describes a transformation matrix which is more accurate then

the one derived previously and more convenient then the exact formulation in a

paper to the Journal of the Structural Division, Proceedings of the ASCE.

Mr. Miller notes that o)
2[M

ss l and o)
2[M

s[)
] are normally small when compared to

[Kss ] and [Ksp ]. With this in mind he expands the (a>
2[M

ssl-[Kss ])

_1
term of the

exact formulation about [K^]" 1 dropping the a)
4 terms in comparison to oo

2

terms. This results in a revised [T]:

[Ti = [K^r 1

[kspi * o)2(-[Kssr
1 [Msp i [K^r 1

[msshkss
]-

> [k
spd

Expressing the first equation of the partitioned eigenvalue problem in terms of

[KppHfpl [Kp
S
HT]{<p

p
} - a>2[M

pp]{fp
} - 0)2[t1p

S
][THf

p
} = {0}

Expanding th9 a>
2
[t1ps](Tl{fp}

term again dropping the to
4 terms

0)2[Mps][Tl{fp}
= -^[MpgllKssr

1

Ir1
Sp]{fp}

Expanding the [Kpsl[T]{<pp
} term

[Kp
S][TK«Pp}

= ([KpsllKss]"
1

IKsp l

-(02[KpSK-[Kssr' [HspMKssl-
1

[nggllKss]-
1

[Ksp]){fp
>

Substituting these expanded expressions into the eigenvalue problem:

([Kppl [Kp
S
l[Kssr' [Ksp ] -wnKpgK-lKssr

1

[Mspl^Kjs]"
1

[M
ss l[Kssr' [K

sp l

- w'lMpp] * oflMpglKssl-' ItlgplMfp) = (0}
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Rearranging gives:

([Kppl " [K^HK^r 1

[Ksp
l){cp

p
)
=

^([Mppl-lMpsKKgsr
1

[Kspl-fSs^ssI"
1

(ln
S
pl-[ri

ss l[K ssr
1

[K
sp ]){<p

p
}

[K*]{<p
p
} = co

2[M«]{<p
p
}

The revised transformation matrix results in the same expressions for the

reduced mass and stiffness matrices. The revised transformation matrix

requires only one inverse of a partition of the stiffness matrix, not a new

inverse for each eigenvalue. In addition, the revised transformation matrix

should provide more accurate displacements since it partly accounts for inertia

terms. The more accurate displacements provide a more accurate basis for

approximating internal forces.

The process suggested by the above formulation proceeds as follows:

1) Partition mass and stiffness matrices and find reduced matrices using

equations (8) and (9).

2) Solve the eigenvalue problem for reduced mass and stiffness matrices.

3) For each eigenvalue find the transformation matrix.

4) Use each transformation matrix to obtain full eigen vector.

Once the full eigen vectors are found the solution proceeds the same as under

Modal Analysis. It should be noted, however that the dimensions of various

matrices have been changed.

Where n equals the number of unknowns in the structure, and m equals the number

of modes retained in the solution, the dimensions of the eigenvalue matrix is

mxm and the dimension of the complete eigen vector matrix [$] is n*m. When the

generalized mass matrix is found from the relation [*r[MH*l its dimensions

are mxm. Due to the orthogonality of the eigen vector matrix, the generalized

mass matrix is still diagonal and there remain only m independent equations to

be solved. Converting the generalized solutions to real coordinates using the

relation {u} = [$]{£} results in full size displacement matrix ([$] is dimensioned

nxm and 10 is dimensioned m*1).
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The Dynamic Finite Element Program

The Dynamic Finite Element Program is a system of programs developed to apply

the methods presented above. The programs are written in Micro-Soft Basic for

the Apple Macintosh, version 2 (Micro-Soft Inc. is currently developing versions

of this advanced version of Basic for IBM compatible machines). Flow diagrams

and listings of the programs are provided in Appendix A. A description of each

program and its operation follows.

DynFEP.menu

The DynFEP.menu program serves to connect the system of programs together. It

provides a menu from which the user can choose to create data files which

describe structures, or to solve problems which have been defined earlier.

Problems may be solved in any of three ways, using dynamic reduction, using

modal analysis, or direct numerical integration of the equations of motion using

the Newmark method.

The DynFEP.menu program maintains control of the flow of execution by passing

five variables to each program in the system. The five variables are: the number

of global nodes labeled as GN; the number of elements labeled as NE; the number

of unknowns remaining after application of the essential boundary conditions

labeled as n (if essential boundary conditions are applied by reducing the number

of equations); the number of modes to be retained in the solution labeled m (if

the structure is to be reduced); and a string variable describing the chosen

solution method labeled as Path$.

DynFEP.create data file

This program creates the data files which describe the structure, and forcing

functions and displacements applied against it. Data describing the structure is

entered using Basic DATA statements. A separate Basic program listing

containing the only the desired DATA statements is prepared and saved under

ASCII (text only) format. The program assumes that such a program has been

prepared and merges with it. When the resulting new program is executed, it will

read the prepared data and create the required structure data files.
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The DATA statements must be formatted to match the READ statements in the

DynFEP.create program. This is normally accomplished by copying a previously

created set of DATA statements, and modifying them to fit the new problem

using Basic's editing capabilities.

DynFEP.mass/stiffness

This program reads previously created structure data files and assembles the

global stiffness matrix, the global mass matrix, and the global static forces

matrix. The program steps through the structure elements, and constructs the

element matrices using the relations presented above. The orientation of the

element is checked and the matrices are transformed if necessary. Then the

element matrices are assembled into the global matrices in accordance with

their end node points.

The program will be executed as determined necessary by the DynFEP.menu

program. The above matrices will be assembled once for any particular

structure, it is not necessary to reassemble the global matrices for different

applied dynamic forces or specified displacements. When the program completes

assemblage of the global matrices it will check a specified solution-pathway

which was set by the DynFEP.menu program. There are two possible paths,

directly to DynFEP if non-modal analysis is to be done, or to DynFEP.essential BC

if modal analysis is to be done. The program will chain to the appropriate

program.

DynFEP.essential BC

This program reads the structure node information file, determines where

essential boundary conditions are to be applied, and then applies the conditions

by eliminating the appropriate rows and columns of the global mass, stiffness,

and static force matrices. The program also creates a boundary condition index

which will be used by succeeding programs to reduce the global dynamic force

matrix, and to add the inertial effects of moving nodes into the global

formulation (ie, to finish applying the essential boundary conditions).

The program will be executed if the chosen solution method is modal analysis or

dynamic reduction of the structure. When the program completes its execution,

it will check the specified solution-pathway and chain to the appropriate

program. There are two pathways possible, the program will chain to

DynFEP.eigen solver if modal analysis is the chosen solution method or it will
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chain to DynFEP.reduce if dynamic reduction is the chosen solution method.

DynFEP.reduce

This program reads the reduce index created by DynFEP.create (from user input)

and reduces the number of equations using the methods presented. In addition

the program prepares two matrices (stored in temporary disk files) which are

used by DynFEP.uncouple/solve to transform the primary eigen vectors (eigen

vector of the reduced structure) into a eigen vector describing the full structure.

The program is executed along the dynamic reduction solution pathway. It

executes after DynFEP.essential BC. When it completes execution it chains to the

DynFEP.eigen solver program.

DynFEP.eigen solver

This program loads prepared mass and stiffness matrices and solves the

corresponding eigen value problem using the Stodola method and a sweeping

matrix as presented above. The result of the program are competed matrices of

the eigenvalues and eigen vectors.

The program assumes that the global matrices have had the rows and columns of

constrained degrees of freedom (ie, specified static and/or dynamic

displacement) removed. The program uses the five variables passed to it by the

DynFEP.menu program to determine if the global matrices have been reduced. If

the matrices have been reduced, the program finds the transformation matrix for

each mode frequency (using information prepared by DynFEP.reduce) and uses it

to transform the partial eigen vectors into a full eigen vectors.

The DynFEP.eigen solver will execute if the dynamic reduction or modal analysis

method of solution is chosen. The program chains to DynFEP.uncouple/solve

upon completion.

DunFEP.uncQUPle/solve

This program pulls together the work of previous programs and solves the

problem to its completion. Its execution results in a displacement -vs- time

history, for each node, stored on disk. The displacements recorded are relative

to the movement of the base. Information provided by the user regarding

specified note displacement is assumed to be accelerations of uniform base

movement.
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The DynFEP.uncouple/solve program loads the static force matrix, the boundary

conditions index, the mode shape matrix, the eigenvalues, and the mass matrix.

If the structure has not been reduced the program also loads the initial

conditions and converts them to the generalized coordinates to be used to start

the Newmark direct integration scheme (If the structure is reduced the mode

shape matrix is not square and can not be inverted to find the initial conditions

generalized form. Therefore, if the structure is reduced, all initial conditions

must equal zero). The program then finds the generalized mass matrix and starts

the numerical integration scheme.

The first operation for each time step is to find the new dynamic force matrix

including the inertial effects of base motion. The dynamic forces for applied to

nodes or members are first found for every node in the structure; the dimension

of the matrix in this form is 3(GN)*1 (where 3(GN) means three times the number

of global nodes). Then the essential boundary conditions are applied, resulting in

a n*l matrix (where n is equal to the number of unknown node displacements).

The inertia forces are obtained by multiplying a base acceleration matrix by the

mass matrix (after essential boundary conditions, therefore matrix is n*l)- The

dynamic, inertial, and static force matrices are then summed. Finally the force

matrix is transformed to its generalized form by premultiplying it with the

transpose of the mode shape matrix. The dimension of the generalized force

matrix is either n*1, or m*1 if the structure has been reduced (where m is equal

to the number of retained modes).

The equations are now in their uncoupled form. The Newmark method is applied

to solve for the generalized displacements, velocities, and accelerations for the

current time step. Once the generalized displacements are calculated the real

displacements are found by premultiplying the generalized displacements, and

their derivatives, by the mode shape matrix. The real displacements are then

stored and the program goes to the next time step. The program proceeds for a

specified number of time steps.

The DynFEP.uncouple/solve program is the ending program for either the dynamic

reduction solution method or modal analysis. Upon completion the program

chains to the DynFEP.menu program.
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DynFEP

The DynFEP program loads the full mass and stiffness matrices, and the initial

conditions. Using the Newmark method and Guass elimination it solves the

problem in its complete form. The result of the program is a displacement -vs-

time history of every node in the system. The displacements recorded are

absolute with regards to the coordinate system. Information provided by the

user regarding movement of nodes is assumed to absolute displacement also.

The first operation for each time step is to find the new dynamic force matrix.

The program reviews the node and element loading and displacement information

stored in the structure data files (displacement information is assumed to be

absolute displacement). If appropriate time history files for non-harmonic

forces will also be accessed. The new dynamic force matrix is constructed and

added to the static force matrix. During this process the program also

constructs a boundary condition index.

The Newmark method is applied, then the boundary condition index is used to

apply the essential boundary conditions. The essential boundary conditions are

applied by modifying the equations which express the known displacement. The

program will again access node information stored on disk to find the specified

displacement, accessing time history files where appropriate for non-harmonic

displacement of nodes.

The equations are now solved using a Guass elimination technique, time is

incremented and the process is repeated. The program continues for a specified

number of time steps.

The DynFEP program executes only when this method of solution has been chosen.

When the program completes execution, it returns control to the DynFEP.menu

program.

Data Files

Information describing the structure are contained in five primary files, the

information file, the node file, and the element file, initial conditions, and

reductions (when dynamic reduction is to be used). These files are created by

DynFEP.create from information provided by the user. A summary of these data

files and their structure is presented below.

Page* 27



www.manaraa.com



www.manaraa.com

CE-685

Term Project

Information Data File:

Name: <Structure Name>

Type: permanent, sequential text

Info: Field Field

DescriDtion Lenath Name

number of global nodes n/a

number of elements n/a

number unknown displacements n/a

number of retained modes n/a

Larry Goshorn

August 1985

Remarks

Node Data File:

Name: <Structure Name> Nodes

Type: permanent, random access

Info:

Description

Flag describing boundary cond.

X global coordinate

Y global coordinate

Horz. Static Load or Displ.

Dyn. Load or Displ. Amp.

dynamic frequency

dynamic phase angle

time history file name

Vert. Static Load or Displ.

Dyn. Load or Displ. Amp.

dynamic frequency

dynamic phase angle

time history file name

Rot. Static Load or Displ.

Dyn. Load or Displ. Amp.

dynamic frequency

dynamic phase angle

time history file name

Field Field

Length Name

Flg1$

Remarks

12 string variable

4 N$(l) single precision

4 N$(2) single precision

4 N$(3) single precision

4 N$(4) single precision

4 N$(5) single precision

4 N$(6) single precision

8 N$(7) string variable

4 N$(8) single precision

4 N$(9) single precision

4 N$(10) single precision

4 N$(11) single precision

8 N$(12) string variable

4 N$(13) single precision

4 N$(14) single precision

4 N$(15) single precision

4 N$(16) single precision

8 N$(17) string variable
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Meaning of flag variable:

— Horiz. load or displ. (1=load, 0=displ.)

— Horiz. static load or displ. (1=yes, 0=no)

— Horiz. dynamic load or displ. (1=yes, 0=no)

— Is dynamic load harmonic? (l-yes, 0=no)

— Vert, load or displ. (l=load, 0=displ.)

— Vert, static load or displ. (1-yes, 0=no)

— Vert, dynamic load or displ. (1=yes, 0=no)

— Is dynamic load harmonic? (l=yes, 0=no)

— Rotational load or displ. (1=load, 0=displ.)

— Rotational static load or displ. (l=yes, 0=no)— Rotational dynamic load or displ. (1=yes, 0=no)

r Is dynamic load harmonic? (l =yes, 0=no)

12 character flag (string variable).

The above file structure allows the user to specify both a static and a dynamic

load or displacement at any node (the modal methods of solution do not support

independent displacement of nodes). The DynFEP programs will interpret the

stored information to be either a specified load or a specified displacement

depending on the above twelve character flag. The flag also tells the program to

whether or not to look for static or dynamic loads and whether the dynamic

loads are harmonic or non-harmonic. The inclusion of a phase angle allows

nodes to be loaded or displaced out of phase of one another for harmonic

displacement or loading.

Element Data File:

Name: <Structure Name>.EIements

Type: random access

Info: Field Field

Description Length Name

Flag describing element loading 6 Flg2$

Remarks

Global node number of left side 2 Lt$

Global node number of right side 2 Rt$

string variable

integer

integer
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Field Field

DescriDtion Length Name Remarks

Left side moment of inertia, l
1

4 E$(1) single precision

cross sectional area, A
1

4 E$(2) single precision

mass per unit length, mj 4 E$(3) single precision

Right side moment of inertia, I2 4 E$(4) single precision

cross sectional area, A2 4 E$(5) single precision

mass per unit length, m2 4 E$(6) single precision

Modulus of elasticity, E 4 E$(7) single precision

Transverse static load left side 4 E$(8) single precision

static load right side 4 E$(9) single precision

dynamic amplitude ' 4 E$(10) single precision

dynamic frequency 4 E$(1l) single precision

dynamic phase angle 4 E$(12) single precision

name of time history file 4 E$(13) single precision

Tangential static load left side 4 E$(14) single precision

static load right side 4 E$(15) single precision

dynamic amplitude 4 E$(I6) single precision

dynamic frequency 4 E$(17) single precision

dynamic phase angle 4 E$(18) single precision

name of time history file 4 E$(19) single precision

Meaning of flag variable:

Tf M TT

Distributed transverse static load (1=yes, 0=no)

Distributed transverse dynamic load (1=yes, 0=no)

Is dynamic load harmonic? (l=yes, 0=no)

Distributed tangential static load 0=yes, 0=no)

Distributed tangential dynamic load (l=yes, 0=no)

Is dynamic load harmonic? (1-yes, 0=no)

6 character flag (string variable)

The above file structure allows the user to apply static and dynamic loads at the

same time. In addition static distributed loads can vary linearly (they can have
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different values at each side of the element). Though use of the above flag.

element loading may also be harmonic or non-harmonic.

Displacement History File:

Name: <Structure Name>.displ

Type: permanent, random access

Info:

Description

displacement of node

velocity of node

acceleration of node

Field

Length

8

8

8

Field

Name

n/a

n/a

n/a

Remarks

( actual or relative, )

( see program notes )

( for explanation. )

The purpose of this file is to store the initial conditions of the structure, as

defined by the user and to store the displacement -vs- time history of the

structure after solution. Each record contains the displacement, velocity, and

acceleration of the appropriate degree of freedom of the node. The first 3(GN)

(3 degrees of freedom times the number of global nodes) records the initial

conditions of the structure, t=0 (supplied by the user). The next 3(GN) records

report the conditions of the structure at time step 1, and so on.

Reduction File:

Name: <5tructure Name> reduce

Type: permanent, random access

Info:

Description

1 ^ reduction of Node/DOF
2M reduction of Node/DOF

i^- reduction of Node/DOF

Field Field

Length Name

n/a

Remarks

8 * between 1 and 3(GN)

8 n/a * between 1 and 3(GN)

8 n/a * between 1 and 3(GN)

8 n/a * between 1 and 3(GN)

The purpose of the above file is to store a list of equations to retain in the

matrix formulation. The DynFEP.create data file constructs the above file with

information provided by the user.

To support the use of non-harmonic forcing functions or specified displacements

of nodes, the programs are capable of reading a time history file. Each record of

the file contains a time and a magnitude of the force or displacement. The

programs will interpolate between two time steps if the required time is not on
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file. A rapid search is employed by the program to find appropriate time, it

assumes that the file is sequential in time. The first record in the file must

contain the total number of time steps recorded in the history file.

It should also be noted that the DynFEP program assumes that information

presented in this file is absolute displacement, while the DynFEP.uncouple/solve

program assumes that the information is accelerations.

User defined Force or Displacement History File:

Name: <User specified file name>

Type: permanent, random access

Info: Field Field

Description Length Name Remarks

Number of time steps in file

Not used

Time

Displacement or Force magnitude

During the solution of the problem other permanent and temporary files will be

created. The purpose of these data files is first to provide storage of matrices

necessary in the solution and there by reduce the amount of memory space

required. Secondly, these data files eliminate the need to recalculate matrices

to analyze different loading conditions or use alternative solutions. A summary

of these data files is presented below.

8 n/a First record only

8 n/a First record only

8 n/a normal record

8 n/a

Permanent data files:

File name

<Structure

<Structure

<5tructure

<Structure

<Structure

<Structure

<Structure

<Structure

<Structure

Name>.K&F.c

Name>.N.c

Name>.K&F

Name>.n

Name>.K*

Name>.ri*

Name>.reduce

Name>.S

Name>.eigen

Description Size

stiffness and static forces before BC 3(GN)*3(GN)-

mass matrix before essential BC

stiffness and static forces after BC

mass matrix after essential BC

reduced stiffness and static forces

reduced mass matrix

listing of nodes to be retained

structure mode shapes

eigenvalues of structure

3(GN)*3(GN)

nx(n+ l)

n*n

mx(rrH)

mxm

m*i

m><m

n*m
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Temporary data files:

File name

<Structure Name>.Kpp

<Structure Name>.Kps

<Structure Name>.Ksp

<5tructure Name>.Kss

<Structure Name>Pl

<5tructure Name>.P2

<Structure Name> D

Description

partitioned stiffness matrix

partitioned stiffness matrix

partitioned stiffness matrix

partitioned stiffness matrix

needed to calc mode shape [T]

needed to calc mode shape [T]

dynamic matrix [K]"
1

[M]

Size

m*m

m*(n-m)

(n-m)*m

(n-m)Kn-m)

(n-m)*m

(n-m)*m

Where n is equal to the number of unknown displacements and m is equal to the

number of modes retained in the answer. Note that if the structure is not reduced

then m is equal to a
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Conclusions

A set of micro-computer programs capable of analyzing the dynamic behavior

plane frame structures has been developed from the set of assumed governing

differential equations. The system of programs allow different approaches to be

used in analyzing a dynamic structure. The capability to use different approaches

provide a means of building confidence by comparing the results of the different

methods, and the flexibilities provided by the different approaches.

Each solution approach presented has unique abilities and limitations. While the

straight numerical integration performed by DynFEP has the ability to include the

independent displacement of nodes, it must process the formulation with no

reduction or further simplification. The added capability has come at the cost of

not being able to analyze larger structures and in a longer computation time. The

modal analysis approach presented offers a faster computation time but

sacrifices the ability to effectively handle independent movement of nodes. The

dynamic reduction approach offers the ability to do larger structures with little

or no additional computation time, but at some sacrifice for accuracy.

The choice of which solution approach to use will normally be based on the type

of problem to be solved. As an example, in Civil Engineering programs such as

these would be used primarily for the analysis of structure response to

earthquakes. The dynamic reduction approach presented above would be most

useful in this situation as it offers the best computation time to size advantage

and can support the boundary conditions imposed by an earthquake.

The programs as presented here are capable of handling about 50 nodes when run

on a system with 370K of memory available (assuming 8 bytes of memory is

required for each double precision variable used). There are two primary

approaches which could be employed to increase the capacity of the programs.

First the assemblage of the global matrices could be done in upper-banded form.

Since mass and stiffness matrices are normally very sparse, this would

substantially increase the capacity. Secondly the global mass and stiffness

matrices could be done on disk rather then in core (also the application of

boundary conditions, and the reduction of the mass and stiffness matrices).
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While this would slow down execution because of increased I/O activity, the

capability to handle larger structures is limited only by the amount of disk space

and the number of retained modes. Since a typical micro-computer system in a

professional installation will include between 10 and 20 megabytes of hard disk

storage, the analysis of structures with several hundred nodes is seen to be

reasonable.

In addition to increasing the capacity of the programs presented, there are other

enhancements which would make them more valuable as an engineering tool. The

programs now simply grind though a specified number of time steps. It would be

desirable for them to have the ability to check selected parameters during the

processing and determine for themselves with to stop the processing. Such

parameters might include critical stresses in selected members, a maximum

stress in any member, completion of a full cycle of all forcing functions,

achievement of a maximum deflection, etc.

The ability to handle three dimensional plane frames is a very natural expansion

to the program capabilities. Other enhancements could include an interactive

input of information in a CAD/graphics orientated format, and graphic replay of

structure response.

All of these enhancements are within the current computing capability of today's

micro-computers. While the analysis on truly complex structures will remain in

the domain of mainframe computers, the dynamic analysis of small structures is

within the realm of processing by micro-computer systems. Such smaller

structures are those that can be described in several hundred nodes or less, or

simplifications of more complex structures which are being used for preliminary

design or investigation prior to a more detailed analysis on a mainframe. The

methods and programs presented in this paper form a corner stone for building

the enhanced systems which are required to fill this expanding field of

engineering analysis.
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Notes:

Program Variables:

6N = number of global nodes.

NE - number of elements.

n - number of unknown displacements

in structure,

m - number of retained modes (if no

reductions then m-n).

Path$ = string defining the choosen

method of solution.

Valid Menu Selections:

If no structure data file is open, then

valid selections include. Open File,

and Create New File.

If a structure data file is opened, then

all selections are valid
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' + -

'
I DynFEP.raenu I

' - +

COMMON GN,NE,DOF,n,m,PM,Path$

Start: 'set up menu

WINDOW l,,<110,30)-<365,54),2: 60SUB BigText

WINDOW 1:CALLMOVETO<20,16): PRINT 'Dynamic Finite Element Program';

WINDOW 2,,<130,70)-<350,306),4

BUTTON 1,1, "Create New Data File",(20,20)-(200,40),1

BUTTON 2,1, 'Open Existing Data File',(20,45)-<200,65),1

BUTTON 3,0, "Direct Integration Only",<20,80)-(200,100),1

BUTTON 4,0, "Modal Analysis", (20, 105M200, 125), 1

BUTTON 5,0, "Dynamic Reduction" , < 20 , 130)-<200 , 1 50) ,1

BUTTON 6,1, "Quit", (120, 165)-<200, 185),

1

IF LEN(PN$)>0 THEN GOSUB Look. at. File

GOSUB NormalText

loop:

CALL MOVETO(10,200): PRINT "Problem name = ";PW

CALL MOVETO(10,212): PRINT USING "Global Nodes =»»';GN

CALL MOVETOd 0,224): PRINT USING "Elements =M";NE

WHILE DIALOG(0)()1: WEND 'wait for the user to do something

ON DlALOG(l) GOTO Create, Existing, FEM,Modal

,

Reduce, Quit 'branch according to menu selection

Create: Path$="Create New Data File": GOSUB Change .Window

F*="Basic Disk l:DynFEP. create data file"

CHAIN F*: END

Existing:

PN$=F1LES$(1,'DYNA") ' get Problem Name from user

IF PN*<)"" THEN GOSUB Look. at. File

GOTO loop

FEM: Path*="Direct Integration Only": GOSUB Change .Window

IF n(0 THEN F$="Basic Disk hDynFEP .mass/stiffness" ELSE F$='Basic Disk hDynFEP' 'no need to reassemble gobal riatnc

es.

CHAIN H: END

Modal: Path*='Modal Analysis': GOSUB Change .Window

IF n<0 THEN F$="Basic Disk l:DynFEP.mass/stiffness" ELSE F$='Basic Disk 1 :DynFEP. essential BC 'no need to reassemble

gobal matrices.

CHAIN F$: END

Reduce: Pa th$=' Dynamic Reduction": GOSUB Change .Window

IF n<0 THEN F$="Basic Disk l:DynFEP.mass/stiffness" ELSE F$="Basic Disk 1 :DynFEP. essential BC 'no need to reassemble

gobal matrices.

CHAIN F$: END

Quit: Path$='Output Wijidow': GOSUB Change .Window

END

Subroutines Below
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Look .At. File: D0F=3 ' find status of processing

OPEN PN* FOR INPUT AS 11 i INPUTM.GN.NE.n.n: CLOSE 111

FOR i=3 TO 5: BUTTON i ,1 : NEXT i 'activate buttons

RETURN

Change .Window: WINDOW CLOSE 1: WINDOW CLOSE 2: CLOSE

WINDOW l,Path*,(5,40)-(265,2?8),l: RETURN

BigText:CALL TEXTFONT(0):CALL TEXTSIZE02): RETURN ' Chicago

LittleText:CALL TEXTFONT(l) :CALL TEXTSIZE<9) :RETTURN ' Geneva

NormalText:CALL TEXTF0NT(1):CALL TEXTSIZE(10):RETURN ' Geneva

ForniatedText:CALL TEXTF0NT(4):CALL TEXTSIZE(9):RETURN ' Monaco
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'.create data fine
Flow Diagram ^

From
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from user.

E
Merge data rtla

Read problem name
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I
Read node data

•ooo notes*

*» ^Jk
<T Done? ^ Next node

,Yea

Read element date

•see notes"

No
JL

<^ Done? ^ N9Mt eloment

Notes:

Program Variables:

GN - number of global nodes.

s

NE = number of elements.

n - number of undnown displacementss

in structure,

m - number of retained modes (if no

reduction then m=n)

Path$ - string variable indicating the

choosen method of solution

The program assumes that a data Text

file has been prepared. Format of the

file is that of a BASIC DATA statement

All data shown in the discription of

the data file structure must be included

.Yea

Create node, alamant. and info

data riles

I
Read reduction flog

Read reduction date

I
Store reduction data
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i + +

'
I DynFEP. create data file I

COMMON GN
f
NE,DOF,n

f
n fPN$,Path«

UINDOU 2 M <110,250)-(380,300),2: GOSUB BigText: UINDOU 2

PRINT "If you have not created a text file of
PRINT 'Basic DATA statements for this program,'

PRINT 'press the 'Cancel' button !'CHR*<7);

PN$=FILES$(1,'TEXT') 'get data file name from user

UINDOU CLOSE 2: IF PN$=" THEN STOP 'user hit cancel button

PRINT "Type 'GOTO Start' to continue. 'CHR*<7)

MERGE PN$ 'load user created data file & execute with it

Start: DIM N$(17)
f
E*(19):Z»=-l

GOSUB ForraatedText

READ PN$

F*=PN$+\ nodes': OPEN F* AS il LEN=92

FIELDI1,12 AS Flglt, 4 AS N$<1), 4 AS N$<2), 4 AS N$<3), 4 AS N$(4), 4 AS N*<5), 4 AS N$U), 8 AS N$(7), 4 AS N*(8), 4 A

S N$<9), 4 AS N$<10), 4 AS N*<11), 8 AS N*(12), 4 AS N$U3), 4 AS N$(14), 4 AS N$<15), 4 AS N$(16), 8 AS N*U7)

F$=PM+'. elements': OPEN F$ AS t»2 LEN=94

FIELDH2.6 AS Flg2*,2 AS Lt$,2 AS Rt*,4 AS E$(l),4 AS E$<2),4 AS E$<3),4 AS E*<4),4 AS E$(5),4 AS E*(6),4 AS E$(7),4 AS E

$(8), 4 AS E*<9),4 AS E*(10),4 AS E$(ll),4 AS E$(12),8 AS E$<13),4 AS E$(14),4 AS E$(15),4 AS EJ(16M AS E*(17),4 AS E$(

18), 8 AS EK19)

F*=PN*: OPEN F$ FOR OUTPUT AS »5

READ NuraNodesX

FOR i=l TO NumNodesX

READ a*: LSET Flgl$=a*

FOR j=l TO 17

IF j=7 OR j=12 OR j=17 THEN READ a$: LSET N$(j)=a$ ELSE READ a: LSET N$(j)=MKS$(a)

NEXT j

PUTUl.i

NEXT i

READ NumElementsX

FOR i=l TO NumEleroents*/.

READ a*,Ltf,RW: LSET Flg2*=a$: LSET Lt*=MKI*<LtX): LSET Rt*=MKI$<Rf/0

FOR j=l TO 19

IF j=13 OR j=19 THEN READ a*: LSET E*<j)=a* ELSE READ a: LSET E$(j)=MKS*(a)

NEXT j

PUT»2,i

NEXT i

'*«*»*»**»*«#*»«***»**»*******»«***** debug

'TRON

DIM U#(NumNodesX»3,3) ' initial conditions

FOR i=l TO NumNodesX«3

READ Ut»<i,l),U«(i,2),UH(i,3)

NEXT i: n3=3: n=NumNodesX*3

CALL Display .Matrix<n,n3,U«0, "Initial Conditions')

CALL store ,r1atrix<n,n3,UIIO ,!*». initial>3)

' m*»»*»*«**»*»***»*»*»«******«»*«»» debug
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'TROFF

INPUT 'Reduction info in this data (y/n)';a*

ro=0: IF a*0'y' THEN GOTO finish. up

READ n: OPEN Pitt*" .reduce' AS 84 LEN=8: FIELD»4,8 AS aa*

FOR i=l TO n: READ r, LSET aa*=MKD$(r): PUTH4,i: NEXT i

finish. up:

INPUT 'Have global matrices been assembled <y/n)";a*

IF a*<>'y' THEN.n=-l ELSE n=0

URITEH5,NuroNodesX,NumElementsX,n,m

GN=NumNodes;'.: NE=NumElementsX: D0F=3

CLOSE: rWIE PN$ AS PNVDYNA'
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DymiFE[P.ma88/8t1inrn®88
Flow Diagram 1

From
DunFEPmenu

Head Element Info

I
Notes:

Read left and right Node Info

Construct Element stlf fnest matrix

I
Construct Element static force matrix

Construct Element mass matrix

I
Assemble Element matrices Into

Globe) matiicee

Next Element

Assemble static force Into Global

force matrix

Next Noda

Store Global stiffness, static

force, end mess matrices

Chain to

DynfEPfssontial PC

Chain to

OgnFEP

Program Variables:

GN = number of global nodes.

NE - number of elements.

n - number of unknowns in the structure.

m - number of retained modes (if no reduction

then m-n).

Path$ - string variable indicating the choosen

method of solution.

[K] provides storage for the global stiffness

matrix, and the static force matrix.

The stiffness matrix is a square matrix

with dimensions equal to GN times 3

The static force matrix is stored with

the stiffness in an addition column

[MJ provides storage for the global mass
matrix. It is a square matrix with

dimensions equal to GN times 3.
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>
+ +

'
I DynFEP.raass/stiffness I

/ + +

COMMON GN,NE,DOF,n,ra,PN$,Path$: GOTO Start

/________________________________________________

' Subroutines below

/______________________________________________________

AssembleForceMat:

FOR i=l TO GN: GETHl.i ' read specified nodal loads

FOR j=0 TO 00F-1

index=(i-l)*D0F+j+l:k=3+5«j
'—NodeStatForces:

Sload=0: A=l+j*4

IFMD$<Flgl*,A,2)=MlMHEN Sload=CVS<N$<k)) ' static load

K«(index,n+l)=K»(index,n+l)+Sload ' add in force; positive to right, upward, clockwise

NEXT j , i : RETURN

EleraentMatrixAsserabler:

FOR ELEMENT=1 TO NE

GOSUB Bui IdEleraentMatr ices

IR=(NW.-1)*D0F:IC=(NZH)*D0F

'-—Assera. K.M.Stat. El era. Forces:

FOR i=l TO DOF

K«<IR+i,n+l)=KJ(IR+i,n+l)+AH<i,7) ' element forces stored in column Hn+1

K#< 1C+ i
t
n+l)=KH( IC+ i ,n+l )+Att< i +D0F ,7)

FOR j=l TO OOF

K»(IR+i,IR+j)=K»(IR+i,]R+j)+A«(i,j) ' assemble stiffness matrix

KiKIR+i ,IC+j)=K»(IR+i ,IC+j)+A»(
i
,j+D0F)

K»<lC+i,IR+j)=K»(IC+i,IR+j)+AII(i+DOF,j)

K»(IC+i,IC+j)=K»(IC+i,IC+j)+AI»(i+DOF,j+OOF)

M«(IR+i,IR+j)=M»(IR+i,IR+j)+B«(i,j) ' assemble mass matrix

MS<IR+i ,lC+j)=M»<IR+i ,IC+j)+B»<i J+DOF)

M«<IC+i,IR+j)=MH(IC+i,IR+j)+BIKi+DOF,j)

M»(lC+i,IC+j)=rll(IC+i,IC+j)+Bt»(i+DOF,j+DOF)

NEXT j,i

NEXT element

Bui IdEleraentMatr ices:

GETH2, ELEMENT :NlX=CVKLt$):N2K=CVI(Rtt) ' get left and right global node I's

GET»1,NW:X1=CVS(N*<1)):Y1=WS<N$(2)) ' get leftside coord's

GET»1,NZ<:X2=CVS<N$(1)):Y2=CVS<N$<2)) ' get right side coord's

L=SQR(<Y1-Y2)*2+<X1-X2)*2) ' find element length

GOSUB Elem. K.M.Stat. Forces

IF Xl-X2=0 THEN angle=SGN<Yl-Y2)*Pi»/2 ELSE angle=2*Pi»-ATN((Yl-Y2)/(Xl-X2))

IF angle>2»Pi»+.003 OR angle<2*Pi#-.003 THEN GOSUB Transform

RETURN

Elem. K.M.Stat. Forces:

I1=CVS(E*(1)):I2=CVS(E*<4)) ' raoraents of inertia

A1=CVS(E$(2)):A2=CVS(E$<5)) ' areas

ral=CVS(E$(3)):m2=CVS<E*<6)) ' mass/length

E=CVS(E$<7)) ' elastic modulus
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FOR i=l TO 6:F0R j=l TO 7:A#(i ,j)=0:NEXT j,i ' initialize/build element stiffnesses

A*(1,1)=E»<A1+A2)/<2»L):AII(4,4)=A«(1,1):AII<1,4)=-A*<1,1)

A»<2,2)=E*6»(I1+I2)/L'3:A*(5,5)=AII<2,2):A»<2,5)=-Att<2,2)

A«<2,3)=-E*<4»I1+2*I2)/L'2:AII<3,5)=-A»I(2,3)

A»<2,6)=-E»<2»I1+4*I2)/L'2:AJK5,6)=-A«<2,6)

A»<3,3)=E*(3*I1+I2)/L

Att(3,6)=E*(Il+I2)/L

A«(6,6)=E»(I1+3*I2)/L

FOR i=2 TO 6:F0R j=l TO i-l:A»(i ,j)=A»<j,i):NEXT j,i ' symetrize stiffness

FOR i=l TO 6:F0R j=l TO 6:B»(i ,j)=0:NEXT j,i ' initialize/build element matrix

BH<l,l)=70»L*<3«ml+m2)/840

B«<l,4)=70*L*<ral+m2)/840

B»(2,2)=24*L*<10«ml+3«ra2)/840

B»<2,3)=-2*L*2*<15«ml+7*m2)/840

B«(2,5)=54»L*(ml+m2)/840

Btt(2,6)=2»L*2*<7*ml+6«m2)/840

B«<3,3)=L'3*(5*mH3*ffl2)/840

Btt(3,5)=-2*L'2»(6»ml+7*ra2)/840

B«<3,6)=-3*L*3*(ral+ra2)/840

B«(4,4)=70*L*(ral+3*m2)/840

B«<5,5)=24»L»<3*ffll+10*m2)/840

B»(5,6)=2»L'2*(7*ml+15*m2)/840

B«(6,6)=L*3«(3«ml+5»m2)/840

FOR i=2 TO 6:F0R j=l TO i-l:BI(i,j)=BI(j,i):NEXT j,i ' symetrize mass matrix

DSloadl=0:DSload2=0:TSloadl=0:TSload2=0 ' find element loading

IF MlD*<Flg2*,l,l)='r THEN DSloadl=CVS(E$<8)):DSload2=CVS<E*<9)) ' distributed static load

IF MID*(Flg2*,4>l>=, l' THEN TSloadl=CVS(E*(14):TSload2=CVS(E$(15) ' tangential static load

AH(l,7)=L*(20*TSloadl+10*TSload2)/60 ' positive to the right

A»(2,7)=L*(-15*DSloadl+45*DSload2)/60 ' positive upward

AH(3,7)=-L*2*<3»DSloadl+2»DS1oad2)/60 ' positive clockwise

Att<4,7)=L*(10*TSloadl+20»TSload2)/60 ' positive to the right

Ail<5,7)=L*<9»DSloadl+21*DSload2)/60 ' positive upward

Att(6,7)=L'2*(2«DSloadl+3*DSload2)/60 ' positive clockwise

RETURN

Transform: 'Subroutine to transform Stiffness, Mass, and Force element matrices

GOSUB BuildTransforraationMat

FOR i=l TO 6.-F0R j=l TO 6:CH(i ,j)=0:F0R k=I TO 6:C»(i ,j)=C»t(i ,j)+T»(k,i)»Afl(k,j):NEXT k,j,i 'transpose[7]*[Ke]

FOR i=I TO 6:F0R j=l TO 6:A»(i ,j)=0:FOR k=l TO 6:A»(i ,j)=A»(i ,j)+C«(i ,k)*T»(k,j):NEXT k,j,i '[transpose[T]*[Ke]]*[T]

FOR i=l TO 6:C»(i,l)=0:F0R k=l TO 6:C«(i ,l)=C«(i ,l)*T#(k,i)«A«(k,7):NEXT k,i:F0R i=l TO 6:A«(i ,7)=CH(i ,1):NEXT 'trantT]

*<Fe)

FOR i=l TO 4:F0R j=l TO 6:C«<

i

,j)=0:FOR k=l TO 6:C«(i,j)=CI<i ,j)+T»(k,i)*B«(k,j):NEXT k,j,i 'transposetTMMel

FOR i=l TO 6:F0R j=l TO 6:BK(i ,j)=0:F0R k=l TO diBKi ,j)=B»(i ,j)+C»(i ,k)»T»(k,j):NEXT k,j,i '[transpose[T]*[Me]]»[T]

RETURN

BuildTransformationMat: ' build [TI

FOR i=l TO <S:F0R j=l TO 6:T»(i ,j)=0:NEXT j,i ' initialize

IF angle MOD Pi 1/2 THEN T«(l,l)=COS(angle) ELSE T»<1,1)=0

TH(4,4)=TI»(1,1):TI»(2,2)=T»(1,1):TI»(5,5)=TI»(1,1)

IF angle MOD Pin THEN T»(l,2)=-SIN<angle) ELSE TH(1,2)=0

T»(4,5)=TII(1,2):TII(2,1)=-T8(1,2):TII(5,4)=T»(2,1)

T*(3,3)=1:T«(6,6)=1

RETURN
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Start: n=GN*D0F : al=l: a3=3: CR*=CHR$<13): PiH=4*ATN(l)

DIM K»(n,n+l),MII(n,n),A«(6,7),Btt(6
)
6),C»((4,6),TII(6

)
<5)

)
N$(17),E$(l?)

F$=PN$+'. nodes" :0PEN F* AS HI LEN=?2

FIELD11.12 AS Flgl$,4 AS N$<1),4 AS N$<2),4 AS N$<3),4 AS N$<4),4 AS ftt<5),4 AS N$<6),8 AS Nf(7),4 AS N$<8),4 AS NK9>,4

AS N$<10),4 AS N$U1),8 AS N$(12),4 AS N$(13),4 AS N$<14),4 AS N$(15),4 AS N$(16),8 AS N$(17)

F*=PN$*'.elements' :0PEN F$ AS 12 LEN=94

FIELD»2,6 AS Flg2*,2 AS Ltf,2 AS Rt*,4 AS E$<1),4 AS E*<2),4 AS E*<3),4 AS E*<4),4 AS E$<5),4 AS E1U),4 AS Ef<7),4 AS \

$(8), 4 AS E$(?),4 AS E$(10),4 AS E$(ll),4 AS E$(12),8 AS E$<13),4 AS Ef(14),4 AS E*U5>,4 AS EMM) ,4 AS El(17),4 AS E$

18), 8 AS E$<1?)

Build. Global .Matrices:

GOSUB ElementMatrixAsserabler

ERASE A#,B«,C*,T»

Build. Static. Force.Mat:

DIM U0«(n,3),Ul»(n,3),Q#(n)

GOSUB AsserableForceMat

CALL Store.Matrix^.n+l.KttO.PNS+'.K&F.c'.aS) ' store stiffness and force matrices

CALL Store.Matrix(n,n,MI»(),Pm+
,
.M.c

,
,a3) ' store stiffness and force matrices

'ft*************************************** ' debug

CALL Display.Matrix<n,n+l,K#<),"Sti-ffness')

CALL Display .Matrix(n,n,M»(), 'Mass')

'**************************<***********

n=0: OPEN PW FOR OUTPUT AS 13: URITE«3,GN,NE,n,ra: CL0SEH3: W1E PN$ AS Pm/DYNA*

CLOSE

IF Path*='Direct Integration Only" THEN CHAIN "Basic Disk l:DynFEP" ELSE CHAIN 'Basic Disk l:DynFEP. essential BC

END

SUB-Prograras below
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'.essential BC
Flow Diagram ^\

From
DynFEP mass/stiffness

Load stiffness matrix

(Kl

Notes.
Load mesa matrix

(HI

I
Root) node BC Info

•
Add Info to DC Index

JX< 0on.7^>^ Next node

Review BC Index •

Displacement*^ Wo
fc

Next equation/Index

specified?

Remove coorespondlng rows
end columns from |K) end (M)

nodal

Analysis

Chain to

DunfEP etpan solver

Chain to

DynfEP.rsdocs

Program Variables:

GN - number of global nodes.

NE - number of elements.

n number of unknowns in the structure.

m - number of retained modes (if no reduction

then m=n).

Path$ - string variable Indicating the choosen

method of solution.

[K] provides storage for the global stiffness

matrix, and the static force matrix.

The stiffness matrix is a square matrix

with dimensions equal to GN times 3.

The static force matrix is stored with

the stiffness in an addition column.

IM] provides storage for the global mass

matrix. It is a square matrix with

dimensions equal to GN times 3.

{BC} provides storage for the boundary

condition index, a column of 1/0s.

If then displacement has been specified
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' + +

'
I DynFEP. essential BC I

' +

COMMON GN,NE,DOF,n,ni,PW,Path$

' Subroutines Below

Switch:

FOR j=l TO n: SUAP K#(i
f
j),K#<k,j): SWAP Mtt(i ,j),MH<k,j): NEXT j

FOR j=l TO n: SUAP K»(j,i),K»(j,k): SUAP M»<j,i),MJ»(j,k): NEXT j

RETURN

Start: n=GN*D0F: al=l: a2=2

DIM BCI(n,l),KiKn,n+l)
I
M«<n

f
n),N$<i7)

F*=PN$+". nodes': OPEN F$ AS I] LEN=92

FIELDH1.12 AS Flgl*, 4 AS N$<1), 4 AS N$<2), 4 AS N$<3), 4 AS N$<4), 4 AS N$(5), 4 AS N$(6), 8 AS N$(7), 4 AS NS<8), 4 A

S N$(9), 4 AS NKIO), 4 AS N$(ll), 8 AS N$(12), 4 AS N$(13), 4 AS N$(14), 4 AS N$(15), 4 AS N$<16), 8 AS N$«17)

CALL Retrie«e.Matrix(n,n+l,K»<),PN$+
,
.K4F.c

,
,a2)

CALL Retrieve.Matrix<n,n,MIK),PN$+".M.c',a2)

De-f ine. Essential .BC:

FOR i=l TO GN: GETIl.i

FOR j=l TO DOF

index=(i-l)*DOF+j: k=l+4*(j-l)

BC»<index,l)=VAL(MID*<Flgl$,k,l))

NEXT j,i

' **»*»»*»»«****»****»»*«*»»***»*»*«*»*»* debug

CALL Display.Matrix(n,al,BC»(),
,
B. C)

*

CALL Display.Matrix(n,n+l,K*K) ."Stiffness")

CALL Display .Matr ix<n,n,M«() ,"Mass")
' ***************************************

CALL Store.Matr ix<n,al ,BC»() ,PN*+' .BC ,a2)

Apply. Essential. BC: k=0

FOR i=l TO n

IF BC»(i,l)=l THEN k=k+l: IF i Ok THEN GOSUB Switch

NEXT i

k=0: FOR i=l TO n: k=k+BC«(i ,1): NEXT i: n=k

FOR i=l TO n: SUAP KKi ,n+l),K»(i ,GN»DOFM): NEXT i

' *************************************** debug

CALL Display.Matrix(n,n+l,KIK), "Stiffness")

CALL Display .Matrix(n,n,M»(), "Mass")

' ***************************************

CALL Store .Matrix(n,n*l,KII(),PN$+".K&F
,
,a2)

CALL Store.Matrix(n,n,M»(),PN$+".M
,
,a2)

IF Path*="Modal Analysis" THEN m=n 'if not in has been set by DynFEP. create

OPEN PN$ FOR OUTPUT AS 12: URlTE»2,GN,NE,n,m: CL0SE»2: NAME PN* AS PW/DYNA": CLOSE

IF Path$="Modal Analysis' THEN CHAIN "Basic Disk 1 :DynFEP. e
i
gen solver" ELSE CHAIN 'Basic Disk l:DynFEP. reduce'

END

Sub-Programs Below

SUB Retr i eve .Matr

i

x(r ,c ,AH( ) ,F* ,k) :"
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DynFEP.reduce
Flow Diagram ^

From
OynFCP.aaaantlol BC

Load reduce inde*

(B>

I
Load etlffness matrix

«0

Usa raduca Indax to

Partition stiffness matrix

(Kppl. (Kpal. (Kap|. IKw|

I
Store stiffness partitions

iKpp), iKosl iKsp), [Kssl

Flnd/Stora raducad stiffnw«
[Kppl - [KpaHKaaHnvlKsplaHK

Clear memory

Load maw matrix

In!

I
Usa raduca Indax to

Partition mesa matrix

IMpp]. [rlpsl. (rtepl. IMsal

I
Clear [HI from memory

Store moee port Itlone

Irlpp), [rlpel Irtepl, iMeel

Reload etlffneaa pertltlone

[Kppl, IKpel, |K»p|, (Keel

I

Notes:

Find/Store reduced meee matrix

[MppHrlpellKMllnvlKspHKpeHKwllnvUrlapl-lrlselKesllnvlKtpl)

I
Find/Store IP 1 1MP21
IPI|>(Kee|1nv(Kep|

IP2] a -0Caa|1nv|MephlKaa|1nv{MeaHKa8|lnv(Kap|

Chain to

DunFEP.elgen solver

Program Variables:

6N = number of global nodes.

NE - number of elements.

n = number of unknowns in the structure.

m - number of retained modes (if no reduction

then m=n).

Path$ - string variable indicating the choosen

method of solution.

[K] provides storage for the global stiffness

matrix, and the static force matrix.

The stiffness matrix is a square matrix

with dimensions equal to GN times 3.

The static force matrix is stored with

the stiffness in an addition column

[li] provides storage for the global mass
matrix. It is a square matrix with

dimensions equal to 6N times 3.

{R} provided storage for the reduce index

It Is a list of equations to be retained.

[P 1 ] and (P2] are calculated and stored to

for use by eigen solver in transforming

eigen vectors.

Available Sub-Programs:

Display .Matrix

Store .Matrix

Retrieve .Matrix

Mat.time.Mat

Mat.plus.Mat

Invert.Matrix

Paqe* A - 13



www.manaraa.com



www.manaraa.com

CE-685 Larry Goshorn

Tern Project August 1995

/
+ +

'
I DynFEP. reduce I

' 4 4

C0W10N GN,NE,DOF,n,ii,PN*,Path«

Start: al=l: p=m: s=n-ra: nl8=l

DIM KII(n,n+l),RII<n,l),Kppl»<p,p),Kssll<s,s),Kspll<s,p),Kpsll<p,s): IF p)s THEN d=p ELSE d=s

DIM Tl#<d,d)
f
T2#<d

f
d) 'temporary storage

CALL Retrieve.Matrix<n,n+l,KII<),PW+".K&F',al)

CALL Retr ieve.Matr ixta, al, Rl< ),PN$+". reduce", al)

'j***************************************** debug

CALL Display .Matrix(m,al,RI*<), "Equations to be Retained")
' **«*m»***»**»»****»*»«»»»****»«»****«*«*

FOR i=l TO m ' move equations to be retained to the top

IF iORKi.l) THEN FOR j=l TO n: SWAP KI(i
l
j),KI(RI<i,i)

l
j)i NEXT j 'swap row

IF iORKi.l) THEN FOR k=l TO n: SWAP K»(k,i),K»(l(,R»(i ,1)): NEXT k 'swap column

NEXT i

FOR i=l TO p: FOR j=l TO p: KppIKi ,j)=K«(i ,j): NEXT j 'build partitioned matrices

FOR k=p+l TO n: KpsttCi ,k-p)=K»(i ,k): NEXT k,i

FOR i=p+l TO n: FOR j=p+l TO n: Kss«(i-p,j-p)=K»(i ,j): NEXT j

FOR k=l TO p: Ksptt(i-p,k)=K»(i,k): NEXT k,i

' »»«*»«»»»»««*»*»««*«**«»«««»»»««»»*»«***»«»«»«*»«»«»»«*««»****«»*»»*»»« debug

CALL Display.Matrix(p,p,Kpplt(),"Kpp"): CALL Display .Matrix<p,s,Kps»<),"Kps")
'

CALL Display .Matrix(s,p,Ksp«(),"Ksp"): CALL Display .Matrixes, KssHO.'Kss")

CALL Invert.Matrix(s,KssS()) 'find [Kss3 inverse then save partitioned matrices

CALL Store.Matrix(p,p,Kppl»()
)
PN$+

,
.Kpp

,
,al): CALL Store.Matrix<p,s,Kps»0,PN*+".Kps",al)

CALL Store.Matrix(s,p,Kspl»<),PN$+\Ksp",al): CALL Store.Matrix(s
)
s,Kssll()

1
PN$+

,
.Kss

,
,aI)

CALL Mat.times.Mat<s,p,s,Kssl»(),Kspl»0,Tlll()) 'find the reduced stiffness matrix

CALL Mat.times.Mat(p,p,s,KpsllO,Tlll<),T2ilO)

CALL Mat.plus.Mat(p,p,nl»,Kppl»(),-nHI,T2l»())

'«»***«*»**m«****»*«»*»»**»«**»*»*»**»»* debug

CALL Display .Matrix(p,p,Kpp»(),"Reduced Stiffness")

'j*****************************************

CALL Store.Matrix(p,p,Kppl»(),PN$+".K*",al) 'store the reduced stiffness matrix

ERASE KH,Kpp»,Ksp«,Kps«,Kssll

DIM M»(n
)
n),Mpp8(p,p),Mss»(s,s),Mspl»(s,p)

)
Mps»(p,s)

CALL Retr ieve.Matr ixfn.n.MHO.PW+'.M'.al)

FOR i=l TO m ' move equations to be retained to the top

IF iORJKi.l) THEN FOR j=l TO n: SWAP MH(i ,j),H«<RI(i ,l),j): NEXT j 'swap row

IF iORKi.l) THEN FOR k=l TO n: SWAP Ht<k,i),H#<k
t
RKi ,1)): NEXT k 'swap column

NEXT i

FOR i=l TO p: FOR j=l TO p: Mpp»(i ,j)=M«(i ,j): NEXT j 'build partitioned matrices

FOR k=p+l TO n: Mps»(i ,k-p)=M«(i ,k): NEXT k ,

i

FOR i=p+l TO n: FOR j=p+l TO n: Mss«(i-p,j-p)=M«(i ,j): NEXT j

FOR k=l TO p: Msp«(i-p,k)=M»(i,k): NEXT k,i

ERASE Mil
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************************************************************************ debug

CALL Dtsp1ay.Matrix<p,p,Mpp*(),'Mpp") : CALL Display .Matr

i

x(p ,s,Mps«< ) ,"Mps"

)

CALL Display .Matrix(s,p,MsplK),"Msp"): CALL Display .Matrix<5,s,Mss1»<) ,'Mss")

DIM Kpp#(p,p) ,Kss^<s,s) ,Ksptt<s,p) ,Kps#<p ,s) 'reload the partitioned stiffness matrices

CALL Retrieve.Matrix<p,p,Kppll<),PN*+".Kpp',al): CALL Retrieve .Matrix(p
)
s

)
Kps«(),Pt«+

,
.Kps

,
,al)

CALL Retrieve.Matrix<s,p,KsplK),PN$+".Ksp",al): CALL Retrieve .Matrixes, KsslO ,PN$+
,
.Kss

,
,al> 'recall stored [Kssl mve

rse

' Find the reduced raass matrix and [PI] and [P2] for use in finding [T] by DynFEP.eigen solver

FOR i=l TO d: FOR j=l TO d: Tl»(i,j)=0: T2»(i,j)=0: NEXT j,i 'init Tl» and T2H

CALL Mat.tiraes.Mat(s,p,s,Kss»(),Ksp#0,Tll»()) ' [Tl] = tKss] inutKsp] = [PI]

CALL Store.Matrix(s,p,Tl»<),PN$+".Pr,al) 'used by DynFEP.eigen solver

CALL Mat. t imes .Mat <p v p (
s ,Mps«< )

,T1«<) ,T2#< ) )
' [T2] = [Mps][Kss]inv[Ksp]

CALL Mat. plus.Mat(p,p,nl»,MppHO,-nl#,T2»<)) ' ™pp] = [Mpp] - [MpsHKsslinvtKsp]

FOR i=l TO d: FOR j=l TO d: T2«(i,j)=0: NEXT j,i 'init T2H

CALL Mat. times.Mat<s,p,s,Mss«<),TUK),T2l»<)) ' [T2] = CMss][Kss]inv[Ksp]

CALL Mat. plus.Mat(s
)
p,nl*,Msp«(),-nU»,T2»0) ' [Msp] = [Msp] + [Mss][Kss]inv[Ksp]

FOR i=l TO d: FOR j=l TO d: TM(i,j)=0: NEXT j,i 'init Tltt

CALL Mat. times.Mat(s
)
p,s,K5S»(),T2#(),Tl#0) ' [Tl] = [Kss]inv[Mss][Kss]inv[Ksp]

FOR i=l TO d: FOR j=l TO d: T2H(i,j)=0: NEXT j,i 'init T2H

CALL Mat. times.Mat(s,p,s,Kss»(),Msp«()
)
T2«()) ' [T2] = [Kss]inv[Msp]

CALL Mat.p1u5.Mat(5
l
p,nl#,Tli()

l
-nl# fT2IO) ' [Tl] = -[KssJinvtMsp] + [KsslinvtMssHKsslinvCKsp] = [P21

CALL Store.Matrix(s,p,TH»()
)
Pm+ ,

.P2',al) 'used by DynFEP.eigen solver

FOR i=l TO d: FOR j=l TO d: TM(i,j)=0: T2»(i,j)=0: NEXT j,i 'init Tltt and T2tt

CALL Mat. times.Mat(s,p,s,Kssfl<),MsplK),TH»0) ' [Tl] = [Kss]inv([Msp] + [Mss][Kss]inv[Ksp])

CALL Mat. times.Mat(p,p,s,Kps»l(),Tl»(),T2»()) ' [T2] = [Kps][Kss]inv([Msp] [Mss][Kss]inv[Ksp])

CALL Mat. plus.Mat(p
)
p,nm

)
Mpp«()

)
-nl»,T2«()) ' [Mpp] = [Mpp] - [MpsHKsslinvtKsp] - [KpsKKsslinvdMsp] [Mss][Kss]in

vtKspl)

' «»*****»«*»**»*****«»»**«»«*»«*»***«»***»« debug

CALL Display.Matrix<p,p,Mpp»(),'Reduced Mass")

'******************************************

CALL Store.Matrix(p,p,Mppl»(),PN$+\M*",al) 'store the reduced mass matrix

ERASE Mpp«,Mps»,Mspl»,Mssll

CLOSE: KILL PN$+".Kpp": KILL PN$+".Kps": KILL PN$+".Ksp": KILL PN$+\Kss" 'distroy temporary files

CHAIN "Basic Disk hDynFEP.eigen solver"

END

Sub-Programs Below
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Vu

Load rwiucBd mens matrix

IMI

I

DynFEP.olgon soUver
Flow Diagram ^

Load rrwws matrix

IMI

Load raducad etlffrteae matrix

IK)

I
Notes:

Load etlffnees matrix

IK)

I
Invart sllf fneee matrix

atom In 0(]

I
Find ID) - (Kjlnveree • (Ml

I
Clear |K)

HI
Load (PI) and IP2)

6oo98 mode ehepe

(MSI)

I
Find Improved mode ehepe

(nS2)«(DHM8l)

Find eigenvalue end
normall ja mode ehepe

<HS2) a (Ma2)/elgen*2

Duplicate good mode snape

fn3U = ffl32)

Find transformation matrix

m = |Pl|»eigan-?«(P2|

Next mode

I

I
Transform reduced mode snape

lrT32)»rr)(n31)

Find new ID]

IDI IDU3I

I
Store (H32) ae column in

mode shape matrix

Reload ID)

I

tape

Store elgenvelue In

elgenvelue matrix

Remove last mode from
sweeping matrix

Program Variables:

6N = number of global nodes.

NE - number of elements.

n number of unknowns in the structure.

m - number of retained modes (if no reduction

then m^n).

PathJ - string variable indicating the choosen

method of solution.

(MSI ] and (M52) provides storage for the mode
shape vectors. The 1 and 2 refer to the

and Improved Iterative values.

IM] provides storage for the mass matrix.

Its dimensions are mxm.
[K] provides temporary storage of the

stiffness matrix or its inverse, depending

on the stage of the program.

[D] provides storage for the result of

(Klinverse * [Ml. it is used to iterate

toward the correct mode shape.

[T] if the structure has been reduced, this

provides storage transformation matrix

to convert reduced mode shapes to full

ones.

[PI ] and [P2] provide storage for matrices

used in constructing the above trans-

mation matrix, IT]. They are dimensioned

(n-m)xm.
[S] provides storage for the sweeping matrix.

This matrix is used to remove last mode
shape.

Available Sub-Programs:

Display .Matrix

Store .Matrix

Retrieve .Matrix

Mat .times .Mat

MatTrans.times .Mat

Mat.Plus.Mat

Invert.Mat

Chain to

OunFCP.uncouple eolve Page* A - 16
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' 4 - 4

'
I DynFEP.e igen solver I

' 4 4

COMMON GN,NE,DOF,n,ii,PN*,Path*: GOTO Start

'
Subroutines Below

Remove. Last .Mode:

FOR i=Al TO n: TM<Al,i)=0: FOR j=Al TO re: T2«<i,j)=0: NEXT j: NEXT i: T3H(A1 ,A1)=0 'init temp storage

CALL MatTrans.times.Mat<Al ,ra,ra ,MS1»() ,M»() ,Tl*t<) ) ' [Tl] = {MSDtranfM]

CALL Mat. tines.Mat<n,n
l
Al

I
MSll<),Tl#<),T2#<)) ' [T21 = (MSlXMSMranim

CALL Mat. tiraes.Mat<Al,Al,m,TllK),MSHK),T3»<)) ' T3 = (MSDtranCMKMSl}

aa«=l/T3»(Al,Al): CALL Mat .pi us .Mat(m ,m,att,S»(
) ,-aa« ,T2«< )

)

'CALL Retriege.Matrix(ra
l
ra,T2»(),PN$+".D",A3) ' load original [Dl into T2H

FOR i=Al TO n: FOR j=Al TO n: T2»<i,j)=DKi,j): DH<i,j)=0: NEXT j,i ' init [Dl

CALL Mat. times.Mat (n,m, re,T2»(),S»(), DUO) ' newtDI = originaltDHSIlatest

RETURN

Create. Eigen. Files:

RL=m*8: F^=PN$+'.S": OPEN F* AS #1 LEN=RL: FIELDttl ,RL AS BB* ' the shape file

a*=MKW<0): FOR i=l TO m: b$=b$4a*: NEXT i
' load shape file with zeros

FOR i=l TO n: LSET BB*=b$: PUTM.i: NEXT i

RL=8: F$=PN*4« .eigen": OPEN F$ AS 12 LEN=RL: FIELDS, RL AS CC$ ' file for eigenvalues

RETURN

Start: Accuracy. 01/100: al=l: a2=2: a3= 3: aU=i: GOSUB Create. Eigen. Files

CALL TEXTFONT(l): CALL TEXTSI2E(9): IF m<)n THEN Flag$='*" ELSE Flag$=""

DIM Dtt(re,re) ,MSl#(n,Al) ,MS2t»(n,Al) ,TM(A1 ,re) ,T3»(A1 ,A1)

DIM K«(re,m4l):IF Flag*="*' THEN CALL Retrieve .Matrix(ra,m,KII(),PN$4
,
.K*

,
,a3) ELSE CALL Retrieve .Matrixtn.mM, K»<) ,FN$+\K

&F",a3)

'*m**««««»»«*»«*»**»*»**»*****»*»*»*** 'debug

PRINT USING "if M m= Htt Flag$= >!<
,
;n,re,flag$

IF Flag*="*" THEN CALL Display .Matr ix(m,ri,K*l<) ," Reduced Stiffness') ELSE CALL Display .Matrix<m,m4l ,KH<)
,
'Stiffness')

CALL Invert.Matrix(m,K»0)

DIM MtKra.ra): CALL Retrieve.Matrix<m,m,Mtt<),PN*4\M'4FlagV3)
' ***«*******************<*<< *<*<******* 'debug

CALL Display .Matrix(m,re4l,KJ(), "Inverted Stiffness")

CALL Display .Matr ix(m,m,M«(), "Mass")

«*****4********»**************4*******

CALL Mat. times.Mat<re,m,m,Kil<),Mil<), DUO) ' [DI = IKIinvtM]

CALL Store.Matrix(ra,m,D#(),Pm4'.D
,
,a3) ' temporary file

ERASE Kit ' clear some memory

DIM S«(n,m),T2H<m,m): FOR i=Al TO re: S«(i,i)=Al: NEXT i 'init [S3 as III

IF n<)m THEN DIM Pii(n,n)
l
P2»(n

l
n)i CALL Retrieve .Matrix<n-m,re,Plt»<),PN$4\Pl',a3): CALL Retrieve.Matrix(n-m,ra

)
P2tl(),PN$

+".P2',a3)'load PI & P2

FOR eigen=Al TO m ' begin solution

FOR i=Al TO m: MSlH(i ,A1)=A1: NEXT

i=2: j=eigen: Sign=-Al ' create a first guess, should have one less sign change as eigen

WHILE j)=i: FOR k=i TO n: MSM(i ,Al)=Sign: NEXT k: Sign=-Sign: i=i+Al : UEND

Change=Al
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WHILE Change)Accuracy

CALL Mat.tiraes.Mat<ra,Al,ra,D*<),MSM<),MS2l»<))

Freq2«=l/MS2II(A1,A1): Change=0

FOR i=Al TO ra

MS2»(i,Al)=MS2tt(i,Al)*Freq2tt

Num=ABS((MSHI<i ,Al)-MS2t»( i ,A1 ))/MS2«< i ,AD): IF Num)Change THEN Change=Num

MS1«<
i
,A1)=MS2«<

i
,A1) : MS2»(

i

,A1)=0

NEXT i

'*»m«*»»*»»*»«*»»****»**»«»*»****»»»** 'debug

IF z=0 THEN CLS

CALL MOVET0(2,50):z=z+l: PRINT USING 'TryM«';z

PRINT Change

'CALL Display .Matrix<n,al .MSlilO,"Trial Vector')

'**»*****»*»»«*«**»»»»****»**»*»*»**#»*

WEND:z=0

IF n=ra THEN FOR i=l TO ra: MS2«<i ,Al)=MSliKi ,A1): NEXT i: GOTO Skip 'transform if structure not reduced

FOR i=l TO n-m: FOR j=l TO ra: T»<i,j)=0: NEXT j,i ' store [PH in [TI

CALL Hat.p1u5.Mat(n-B
f
n,al,Tl<)

I
Freq2#,P2IO) ' find m then below create matrix with [I] over -IT]

FOR i=I TO n-ra:F0R j=l TO ra:T»(i+ra,j)=-T*(i ,j):NEXT j,i:F0R i=l TO ra:F0R j=l TO ra:T»(i ,j)=-(i=j):NEXT j,i

FOR i=ra TO n: MS2H(i ,A1)=0: NEXT i 'finish initializing MS2H

CALL raat.tiroes.Mat(n,Al
)
ra

I
T8(),MSl»(),MS2»()) ' full eigenvector stored in MS2tt

Skip:

'****»**«»**«*»**»*»»»*«*»»»«*»»«***»*»* 'debug

PRINT USING "Mode Shape M Freq =M.M ;eigen,SQR(Freq2»)

CALL Display .Matr i x(n ,A1 ,MS2tl<
)

,

"Mode Shape')

'****«**»**»***»»»**»*»**»***»»»»**»*«**

'Prepare for next mode shape

Lt=(eigen-Al)*8: Rt=(ra-eigen)*8

FOR i=l TO n: GETUl.i: a*=BBS

a$=LEFT$<a$,Lt)+MKD$(MS2»(i,l))+RIGHT*(a$,Rt)

LSET BB$=a$: PUTSl,i ' store element in eigen vector matrix

NEXT i

LSET CC*=MKD$(Freq2l»): PUTU2, eigen ' store square of eigenvalue

IF eigen<n THEN GOSUB Remove. Last.Node

NEXT eigen

CLOSE: KILL PN$+'.D': KILL PW+'.K*': KILL PW+'.M*': KILL PN*+'.P1': KILL PN$+'.P2" ' distroy temporary files

'»**»»*»****»****»***»***»»**»#»»»*»*#»* 'debug

CALL Retrieve.Matrix<n,ra,S*<),PN*+'.S',al)

CALL Display .Matrix<n,m,SI»(), "Mode Shapes')

CALL Retrieve.Matr ix<m,al,EH<),PN$+". eigen', al)

CALL Display .Matr ix(m,nl ,Elt<) ," Eigen values')

'»**«*«*«»*»**»*****»*»**»*»»»»***»*»«»*

CHAIN 'Basic Disk l:DynFEP. uncouple/solve'

END

Sub-Programs Below
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From
¥

Load static forces

if)DynfCP «lg«n »olv»r

*
Lcxid mod* shape matrix

[5]

Ftnd/Storo generalized mass matrix

Irll [3t||M|(3|

*
Load boundary conditions

(BC)

DynFEIP.ijncouiplle/aollve
Flow Diagram I;^^^^^^^^^

Notes:

Load Initial

Conditions [Uol

Yea

*
Apply Boundary Condition*

1 1 1

Find gonoraltzod caor. Load maaa matrix

[Uol . iSlllUo) IIa

A
Load stganvaiuas

<E>

Find Nawmark constants

A1.A2, A3, AO. A7

Find dynamic forces from
forces on nodes, for ess on

• laments. Inertlal forcas

from essential BC

Find generalized fores matrix

<Fd> - l3UHFd) (Fs))

Soiva SOOF aquations

UI1 = <Fd1/T11 A0"UO1 A2"IW1 A3"UO~1) / (AO ED

Find currant generalized acceratlon & velocity

0JI"J a A1"((UI ) - (DO)) - A2«(U0) - A3MU0")
{U1) = (UO) «»- Del)"(UO-} Dal«{UD)n)eltaT

Swop lllll and (UO)

for next time step

I
Ftnd/Stors real coord, values

lut.ur.uri-isnui.ur.un

Program Variables:

GN = number of global nodes.

NE - number of elements.

n number of unknowns in the structure.

m - number of retained modes (if no reduction

then m=n).

Path$ - string variable indicating the choosen

method of solution.

(5] provides storage for the mode shape

matrix.

[M] provides storage for the real or generalized

mass matrix, depending on the stage in the

program. Its dimensions are mxm.
IU0) and [111 ] provide storage for the current

and last generalized displacement,

velocity, and acceleration vectors.

Treated mathematically as 3 column

matrices, they are stored as a nx3.

[U] provides storage for the current real

displacements. Its dimensions is nx 1

.

[E] provides storage for the eigenvalue

matrix. Mathematically It's a square

diagonal matrix, it's stored as a mx 1

.

(FdJ provides storage for generalized dynamic

forces. It is dimensioned as mx 1

.

{Fs) provides storage for static forces. It is

dimensioned as nxl

.

Available Sub-Programs:

Display .Matrix

Store Matrix

Retrieve .Matrix

Mat.times Mat
MatTrans .times .Mat

Mat.Plus.Mat

Invert.Mat
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' —
'

I DynFEP . uncoupl e/sol ve I

t - +

C0M10N GN,NE,DOF,n,ra,PN*,Path*: GOTO Start

'
Subroutines Below

ReadHistoryFile:*

OPEN History AS «4 LEN=16: FIELD 114,8 AS Z$<1),8 AS Z$<2)

GETtt4,l: Max=CVS':Z$(D): Min=2: i=INT(<Max-Hin)/2+l)

GET«4,i: T1=CVS<Z*<1))

UHILE Max>Min+l AND TlOT+phaze

IF TKT+phaze THEN Min=i: i=Min+INT<<Max-i)/2)

IF Tl>T+phaze THEN Max=i: i=Max-INT((i-Nin)/2)

GET»4,i: T1=CVS(Z*<1))

UEND: IF T+phaze=Tl THEN f=CVS(Z*<2)): GOTO found

GET«4,Min: T1=CVS(Z*<1)): fl=CVS(Z*(2)): IF T+phaze=Tl THEN f=fl: GOTO found

GETH4,Max: T2=CVS(Z$U)): f2=CVS(Z$(2)): IF T+phaze=Tl THEN f=f2: GOTO found

f=(T+phaze-Tl)*(f2-fl)/(T2-Tl)+fl ' interpolate

found: CL0SEH4: RETURN

AssembleForceMat: last=0

FOR i=l TO GN

FOR j=0 TO DOF-1: index=(i-l)*DOF+j+l

IF BC»< index, 1)=1 THEN GOSUB NodeDynForces

NEXT j , i : RETURN

NodeDynForces: k=3+5»j: Dload=0: A=l+j*4: IF lastOi THEN GET»l,i: last=i 'set index's and read node dynamic forces

IF MID$(Fl9l$,A+2,2)=
, ir THEN amp=CVS(N$(k+l)) :angle=CVS(r«<k+2)) :phase=CVS<N$(k+3)) :Dload=amp*SIN( t*angle+phase) 'Harri

Load

IF MIM(Fl9H,A+2,2)= ,
10" THEN History*=E$(k+4):G0SUB ReadHistoryFile:Dload=f ' non-harmonic load

Fd#(index,l)=Fdtt< index, l)+D1oad ' add in force; positive to right, upward, clockwise

RETURN

InertialForces:

FOR i=l TO 2: 6ET*l,EBBKi,l): j=EBC/.(i ,2): A=3+(j-l)*4: k=3+(j-l)*5: Displ=0

IF MID$(Flgl$,A+2,2)=
,
Il' THEN an>p=DJS(N$(k+l)):angle=CVS(r«(k+2)):phase=CVS(N$(k+3)):Displ=DispHamp*SIN(t»angle+phas

e)

IF MIM(Flgl$,A+2,2)=
, 10* THEN History*=E*(k+4):G0SUB ReadHistoryFi1e:Disp1=Displ+f ' non-harmonic Displacement

FOR k=l TO GN: index=(k-l)»DOF+j: Fd»( index, 1)=-Displ : NEXT k

NEXT i: k=0

FOR i=l TO GN*NE ' apply essential BC

IF BC«(i,l)=l THEN k=k+l: IF i Ok THEN SUAP Fd»(k,l),Fd»(i ,1)

NEXT i

CALL Mat.times.Mat(n,nl,n,r1IK),Fdll(),T2i»<))

RETURN

El eraentMatr i xAssembl er

:

FOR ELEMENTS TO NE

GOSUB BuildElementMatrices

IR=(Nr/-l)*D0F:IC=(N2y.-l)»D0F

'— Assem.Dyn.Elem. Forces:

FOR i=l TO DOF: Fd«<IR+i ,l)=Fd«(IR+i ,l)+fH(i): FdHdC+i ,l)=FdH(IC+i ,l)*M(i*D0F): NEXT i
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NEXT element: RETURN

BuildElementMatrices:

GETM2, ELEMENT :NW=CVKLt*):N2X=CVKRt$) ' get left and right global node l'«

GETII1,NM:X1=CVS(N*(1)):Y1=CVS<N$<2)) ' get left side coord's

BET#l,N27.;X2=CyS<r»<l)):Y2=CVS<N$<2)) ' get night side coord's

L=SQR((Y1-Y2)'2+(X1-X2)*2) ' find element length

'— Elem.Dyn. Forces:

DDload=0:TDload=0

IF Ml[»(Flg2t,2,2)='ll" THEN amp=CVS(E$(10)):angle=CVS(E$(ll)):phaze=CVS(E$(12)):0Dload=amp*SIN(t*angle+phase)'Harm

Dyn

IF MIM(Flg2$,2,2)=
,
10* THEN History$=E*<13):G0SUB ReadHistoryFile:DDload=f ' non-harmonic dyn load

IFMID*<Flg2*,5,2)='ir THEN arop=CVS(E$(16)):angle=CVS(E$(17)):phaze=CVS(E$(18)):TDload=amp*SlN(t*angle+phase)'Harm

TanOyn

IF MID*<F1q2*,5,2)='10" THEN History$=E*(19):G0SUB ReadHistoryFile:TDload=f 'non-harmonic tan dyn load

f #< 1 )=L*TD1 oad/2 : f #< 4>=-f •< 1 > ' positive to the right

fH(2)=L«DDload/2:fll<5)=f«(2) ' positive upward

ftt(3)=-L'2*DDload/12:fl»<6)=-f!»<3) ' positive clockwise

IF Xl-X2=0 THEN angle=SGN<Yl-Y2)*Pil»/2 ELSE angle=2*Pi«-ATN((Yl-Y2)/(Xl-X2))

IF angle>2»Pi»+.003 OR angle<2*Pi«-.003 THEN TransformDynForce

RETURN

TransformDynForce: 'Subroutine to transform Stiffness, Mass, and Force element matrices
'— BuildTransformationMat: 'build [T]

FOR i=l TO 6:F0R j=I TO 4:T«(i ,j)=0:NEXT j,i ' initialize

T»(l,l)=C0S(angle):T»(4,4)=TII(l,l):T»(2,2)=TI»(l,l):TII(5,5)=T»(l,l)

TH<1 ,2)=-SlN(angle) :T»(4,5)=T«(1 ,2) :T»<2,1)=-TI(1 ,2) :TIK5,4)=T«<2,1)

T#(3,3)=1:T8(6,6)=1

FOR i=l TO 6:C»<i,l)=0:F0R k=l TO 4:CH<i ,l)=CII(i ,l)+TH(k,i)*fll<k):NEXT k,i:F0R i=l TO 6:f»(i)=CH( i ,1) :NEXT 'tranlTHd)

RETURN

Ge t. del taT.and.Time. Steps:

DeltaT=2/SQR(E«(m,D): T*=STR$<DeltaT): TS*=STR$<INT(SQR<EH<l,l))/DeltaT)+l) ' max del taT and min Kcycles

UINDOU 3,,(250,22)-(505,132),-4

CALL TEXTSIZE(IO): CALL M0VET0(5,26): PRINT 'Enter time step (max. shown)': CALL TEXTSIZE02)

EDIT FIELD 1,T$,<5,30M250,45)

CALL TEXTSIZE(IO): CALL MOVET0(5,61): PRINT 'How many time steps?': CALL TEXTS1ZEU2)

EDIT FIELD 2,TS$,<5,65)-(250,80): EDIT FIELD 1

BUTTON 1,1,'OK',(200,84)-(250,102)

i=l

loop:

d=DIALOG(0)

IF d=l OR d=6 THEN done 'got OK button or RETURN

IF d=2 THEN i=DIAL0G(2): EDIT FIELD i 'got field selection

IF d=7 THEN i=(i MOD 2)+l: EDIT FIELD i 'got TAB key

GOTO loop

done: CALL TEXTSI2E<10): DeltaT=VAL(EDlT$(l)): NuraSteps=VAL(EDIT$(2)): WINDOW CLOSE 3

RETURN

Start: Pi»=4*ATN(l): CR$=CHR*(13): nl=l: n3=3: n4=4: one»=l

DIMN$U7),E*(19)

F*=PN$+'. nodes' :0PEN F* AS 81 LEN=92
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FIELDttl ,12 AS Flgl$, 4 AS N$<1), 4 AS N$(2), 4 AS N$(3), 4 AS N$<4), 4 AS N$(5), 4 AS N$(6), 8 AS NM7), 4 AS NK8), 4 A

S NK9), 4 AS N$<10), 4 AS N$<11), 8 AS N$<12), 4 AS N$<!3), 4 AS N$(14), 4 AS NM15), 4 AS Nf(16), 8 AS »<!?)

F$=PN$+'. elements' :0PEN F* AS 12 LEN=?4

F1ELD»2,6 AS Flg2*,2 AS LW,2 AS Rt$,4 AS E*(l),4 AS E$<2),4 AS E$(3),4 AS E$<4),4 AS Et(5),4 AS E$(6),4 AS E$<7),4 AS E

$(8), 4 AS E$(9),4 AS E«(10),4 AS E*<11),4 AS E$(12),8 AS E$<13),4 AS E$<14),4 AS E$(15),4 AS E*(16),4 AS E$(17),4 AS E»<

18) ,8 AS E$(19)

PWW.dispr: OPEJ-4 F* AS H3 LEf4=24

FIELDK3.8 AS U$, 8 AS V$, 8 AS Ac$

IF nOra THEN Flag$='*' ELSE Flag*=" ' -flag reduced structure

DIM K»(n,n+l),Fs»(n,l): CALL Retrieve .Matrix(ra,m+1,KI»() ,PN$+
,
.K4F",n4)

FOR i=l TO n: Fs«<
i
,1 >=KH<

i
,n+l) : NEXT i: ERASE KH ' load static force matrix

'Find/Store Generalized Mass Matrix

DIM M«(n,n),Mdia»(ra,nl),TU»(n,n): CALL Retrieve .Matrix(n,n,MII<),PN$4'.M',n4)

DIM Stt(n,ra): CALL Retrieve.Matrix(n,m,Stl<),PW+'.S',n4) ' load mode shapes

CALL MatTrans.tiraes.Mat(ra,n,n,SH<),MI!(),Tlll<))

FOR i=l TO n: FOR j=l TO n: M*(i,j)=0: NEXT j,i 'init Ml

CALL Mat.tiraes.MatdB.ra.n.TlHO.SHO.MUO): FOR i=l TO n: MdiaIKi ,l)=MS(i ,i): NEXT i ' store dta. in MdiaU

'»*»****»**»#*********»*»»********»* debug

CALL Display.Matrtx<m,ro,Mtt<) ."General i2ed Mass Matrix')

CALL Display ,Hitrix(n,n,SIO, "Mode Shapes')

CALL Retrieve.Matrix(n,n,MHO,PN*+'.M',n4) ' [MI needed to find inertial forces

ERASE Tltl ' clear some memory

DIM EH(m,l): CALL Retrieve.Matrix(ra,nl,E«0,Pm+'.eigen',n4) ' load eigenvalues

DIM BCI»<GN*DOF,l):p=GN*DOF: CALL retrieve .Matrix<p,nl,BC«(),PN$+\BC",n4) ' load boundary condition index

'***»»***»»*»««******»****»***«»»«*** debug

CALL Display .Matrix(GN*DOF,nl,BCI»<), "Boundary Condition Index")

DIM U0»<ra,3),UUKGN*NE,3): GOTO Skip 'trouble with initial conditions file, can't resolve

IF Flag$="*' THEN Skip ' initial conditions must=0 if structure is reduced

CALL Invert.Matrix(n,S«0)
' *»»«***»**»»***»»**********#**»»**» debug

CALL Display.Matpix<n,n
)
S«0,"Inwerted Mode Shapes')

'*i*X*****X«««**ft*X«**»*******i**«tt*«

CALL Retrieve .Matrix(GN*D0F,n3,Ulll()
)
PN$+".initiar

)
n4): k=0

FOR i=l TO GN*D0F 'apply boundary conditions to intial conditions

IF BC»(i,l)=l THEN k=kM: IF i Ok THEN FOR j=l TO 3: SWAP UlH(k
)
j),UlH(i ,j): NEXT j

NEXT i

CALL Mat. times.Mat<n,nl,n,S$(),UM<),UOII<)) ' find general ized initial conditions

CALL Retrieve.Matrix(n,ra,S»(),PN$+'.S',n4) ' reload mode shapes

Skip: 'CALL Store.Matrix<n,n3,UM(),IW.dispr,n4) 'store initial conditions in displacement file

Find. Essential. BC: i=0: j=l

WHILE j<=2: i=i+l: index=<i-l)*DOF+j ' find out where uniform base movement stored

IF BCK index, 1)=0 THEN EBC*/(j,l)=i : EBCX<j
f
2)=j: j=j + l: i=0

UEND

'Get or calculate constants

delta=l/2:alpha=l/6: GOSUB Get. deltaT.and.Time. Steps

A0=l/(alpha»DeltaT'2):A2=l/(alpha»DeltaT):A3=l/(2*alpha)-I ' calculate constants

A6=Del taT*(l-del ta) :A7=del ta«De1 taT
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FOR Counter=l TO NuriSteps ' begin solution loop

DynForceMat: FOR i=l TO GN«NE: FdH<i,l)=0: NEXT i: FOR i=l TO n: T2«(i,l)=0: NEXT i 'in it FdH 4 T2»

GOSUB InertialForces: GOSUB AssembleForceMat: GOSUB EleraentMatrixAssembler

FOR i=l TO GN*NE ' apply essential BC

IF BC»(i,l)=l THEN k=k+l : IF i Ok THEN SWAP Fd»<k
t
l) ,Fd«< i ,1)

NEXT i

CALL Mat. Plus.Mat<n,nl,one«,FdSO,onefl,T2IIO) 'add node/element forces and inertial forces

CALL Mat.Plus.Mat<n,nl,oneft,Fdll(),oneS,FsllO) 'add dynamic and static forces

FOR i=l TO n: T2«(i,l)=0: NEXT i 'init T2H

CALL MatTrans.times.Mat<m,nl ,n,S»<) ,Fd*K
)
,T2»() )

' find generalized dyn. force matrix

Solve:

FOR i=l TO ra

Ul«(i,l)=(Fd«<i,l),/Mdiall(i,l)+A0»U0«(i,l)+A2*U0ll(i,2)+A3*U0ll(i,3))/<A0+EII(i,l))

NEXT i

FOR i=l TO m ' find V and A vectors and store displacements in U

Ul»< i ,3)=A0*(U1»< i ,1)-U0f»(
i

,1))-A2»U0I»< i ,2)-A3*U0»(
i
,3)

Ultt< i ,2)=U0»(
i

,2)+A6«U0«(
i
,3)+A7*Ultt< i ,3)

FOR j=I TO 3: U0«<i ,j)=Ulfl(i ,j): Ul»<i,j)=0: NEXT j
' [UOI = [U1I for next time step, init [U1I

NEXT i

Find. Store. real .displacements:

CALL Mat. times.Mat<n,n3,m,S«<),U0ll<),Ul!»O) ' IU11 = CS1CU01 convert from general ized coordinates

'*»**«**»*»»***»*»***»****»#*»*»» debug only

CALL Display .Matr ix<n,n3,Ultt<)
,

"

Displacement, Velocity, Acceleration")

'a*******************************

FOR i=l TO n

LSET U$=MKS$(UM<i,l)):LSET W=MKS*(UM(i ,2)):LSET Aci=MKS$(Ullt<i ,3)):j=i+Counter»n:PUT»3,j ' save to disk

NEXT i

T=T+DeltaT 'next time step

NEXT Counter

CLOSE: CHAIN "Basic Disk hDynFEP.roenu"

END

Sub-Programs Below
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From
DunFEP.menu

Load stiffness and static f orcss

H

I
Notes:

Load ma&s matrix

(Ml

I
Load initial conditions

I (uo). (uoi. (ucn |

Find Newmartc constants

AI,A2, A3.A0.A7

I
Find dynamic forcaa from

forces on nodes, forces on

dements. Inerttol forces

from essential DC (Fd|

I
Find Effective matrices

IK] - AO«lrTJ IK]

IF) • IFd) » lrll«<AO«<UO> * A2«(UO) A5«(UO~))

Solve simultaneous equations

1
Find currant accsratlon & velocity

BUT a A1»({UI) - (UO)) - A2«{U0) - A3»{U(r)

{UH = <UO) <(1- Dal)»{UO
-
) DelMu*n)»DeltaT

YSS

Swap (U1) and <U2>

for next time slap

I

Return to

DynFEP menu

Program Variables:

6N - number of global node9.

NE = number of elements.

n - number of unknowns in the structure.

m = number of retained modes (if no reduction

then m-n).

Path$ - string variable indicating the choosen

method of solution.

[K] provides storage for the global stiffness

matrix, and the static force matrix.

The stiffness matrix is a square matrix

with dimensions equal to 6N times 3.

The static force matrix is stored with

the stiffness in an addition column.

[M] provides storage for the global mass
matrix. It is a square matrix with

dimensions equal to GN times 3.

[UO] and [U1 ] provide storage for the current

and last displacement, velocity, and

acceleration vectors. Treated as 3 column

matrices, they are stored as a nx3.

{FdJ provides storage for generalized dynamic

forces. It is dimensioned as mxl

.

Available Sub-Programs:

Display .Matrix

Store .Matrix

Retrieve .Matrix

Increment Time

I
Reload stiffness

IK]
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' + 4

'
I DynFEP I

' 4

COMMON GN,NE, DOF, n,ra,PN$, Path*: GOTO Start

'
Subroutines Below

'--__-------_----_-________•-________________________________

ReadHistoryFile: BUTTON 10,2

OPEN History* AS 14 LEN=16: FIELD 14,8 AS Z$<1),8 AS Z*(2)

GET1»4,1: Max=CVS(Z$(l)): Min=2: i=INT( (Max-Mi n)/2+ 1

)

GETS4,i: T1=CVS<2$(1))

WHILE Max>Min+l AND TlOT+phaze

IF TKT+phaze THEN Min=i: i=Min+INT((Max-i)/2)

IF TDT+phaze THEN Max=i: i=Max-INT((i-Min)/2)

GETH4,i: T1=CVS(Z$(1))

WEND: IF T+phaze=Tl THEN f=CVS(Z*(2)): GOTO found

GET»4,Min: T1=WS(2$(D): ^1=DJS<2*<2)) : IF T+phaze=Tl THEN fMl: GOTO found

GET#4,Max: T2=CVS(Z$(D): f2=CVS<Z$<2)): IF T+phaze=Tl THEN f=f2: GOTO found

f=<T+phaze-Tl)*<f2-fl)/<T2-Tl)+fl ' interpolate

found: CL0SEK4: BUTTON 10,1: RETURN

Guass: BUTTON 14,2

FOR i=l TO n:Mtt=KH<i,i):FOR j=l TO N+l:K»(i
,
j >=K»<

i
,j)/M»:NEXT j

FOR k=l TO n:IF k.Oi THEN M«=K«(k,i):F0R j=i TO n+l:K»(k,j)=KII(k,j)-Ktt(i ,j)»fi«:NEXT j

NEXT k,i: BUTTON 14,1: RETURN

AsserableForceMat: BUTTON 7,2

FOR i=l TO GN: GETM,i ' read specified nodal loads

FOR j=0 TO DOF-1

index=(i-l)*D0F+j+l:k=3+5*j
'— NodeDynForces:

Dload=0: A=3+j»4

IF MIW(Flgl$,A,2)='ir TH^ amp=WS(^(k+l)):angle=CVS(N$(k+2)):phase=0'S(N$(k+3)):Dload=anip«SlN(t»an9le+phase)
/

ha

rre

IF MID$(FlgH,A,2)=
, 10' THEN History*=E$(k+4):G0SUB ReadHistoryFile:D1oad=f ' non-harmonic load

FdtKindex)=Fdtt( index )+Dload ' add in force; positive to right, upward, clockwise
' _—

_

Ul*< index, l)=0:k=l+4*j:IF MID$(Flgl$,k,l)=
, 0' THEN UlH(index,l)=l ' Flag essential B.C., used later

NEXT j , i : BUTTON 7,1: RETURN

Essential. B.C: BUTTON 13,2

Disp1=0: Node=INT<(i+2)/DQF): j=(i+2) MOD DOF: k=3+j*5: A=l+4*j:lF j=0 THEN GETM.Node

IF MIM(Flgl$,A+l,l)='r THEN Displ=CVS(N$(k)) 'static displacement

IF MIW<Flgl$,A+2,2)="ll' THEN arap=CVS(N$(k+l)):angle=CVS(l«(k*2)):phase=CVS(N$(k+3)):Displ=DispHamp*SIN(t*angle+phase

)

IF MlM(Flgl$,A+2,2)='10' THEN History*=E*(k+4):G0SUB ReadHistoryFile:Displ=Displ+f ' non-harmonic Displacement

BUTTON 13,1: RETURN

EleraentMatrixAsserabler: BUTTON 8,2

FOR ELEMENTS TO NE

GOSUB BuildElementMatrices

IR=(NlX-l)*D0F:IC=(N2y.-l)*D0F

'— Assem.Dyn.Elem. Forces

FOR i=l TO DOF: Fdi<IR*i)=Fdi<lR*i)*«<i): Fd«< I C+ i )=Fd«<IC+ i )*f M< i+DOF> : NEXT i
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NEXT element: BUTTON 8,1: RETURN

BuildElementMatrices: BUTTON 9,2

GET»2,ELEMEOT:NlX=CViat$):N2X=CVI(Rt*) ' get left and right global node it's

GETM,NM:X1=WS<N$<1)):Y1=CVS<N$(2)) ' get left side coord's

GET*1,N2Z:X2=CVS<N*<1)):Y2=CVS<N$<2)) ' get right side coord's

L=SQR((Y1-Y2)'2+(X1-X2)*2) ' find element length
'— Elem. Dyn. Forces:

DDload=Q:TDload=0

IF MIW(Flg2$,2,2)=
,
ll" THEN arap=CVS(E$(10)):angle=CVS(E$(ll)):phaze=CVS(E$<12)):D01oad=arap*SIN(t*angle+phase)'ham

IF MIM<Fl92^,2,2)='10
B
THEN History$=E$(13):G0SUB ReadHistoryFile:DDload=f ' non-harmonic dyn load

IF MID$<Flg2*,5,2)='H' THEN amp=CVS(E$(16)):angle=CVS(E$(17)):pha2e=CVS(E$(18)):TDload=amp*SlN(t<angle+phase)'harra

IF MID*(Flg2*,5,2)='10' THEN History*=E*(19):G0SUB ReadHistoryFile:TDload=f 'non-harmonic tan dyn load

f*(l)=L«TD1oad/2:fl»(4)=f«<l) ' positive to the right

f»(2)=L*DDload/2:flK5)=f»(2) ' positive upward

f»(3)=-L'2»DDload/12:f«(6)=-f»(3) ' positive clockwise

IF Xl-X2=0 THEN angle=SGN<Yl-Y2)»Pi«/2 ELSE angle=2*Pi«-ATN((Yl-Y2)/<Xl-X2))

IF ang1e>2*Pi»+.003 OR angl e<2*Pi #-.003 THEN GOSUB TransformDynForce

BUTTON 9,1: RETURN

TransformDynForce: BUTTON ll,2:'Subroutine to transform Stiffness, Mass, and Force element matrices

GOSUB BuildTransformationMat

FOR i=l TO 6:C«(i,l)=0:F0R k=l TO 4:fJ(i ,l)=C»(i ,l)+T«<k,i)*fll<k):NEXT k,i:F0R i=l TO 6:Wi)=C»<i,l):NEXT 'trantTWf)

BUTTON 11,1: RETURN

BuildTransformationMat: BUTTON 12,2: ' build IT]

FOR i=l TO 6:F0R j=l TO 6:T«(i,j)=0:NEXT j,i ' initialize

IF angle MOD PiH/2 THEN T»(l,l)=COS( angle) ELSE T«(1,1)=0

T»(4,4)=T»(l,l):TI»(2,2)=Ttt(l,l):T»(5,5)=T»(l,l)

IF angle MOD Pi* THEN T«<l,2)=-SIN(angle) ELSE T«(l,2)=0

T»(4,5)=T»(1,2):T»(2,1)=-T»(1,2):TJI(5,4)=TII(2,1)

TH<3,3)=1:T*<M>=1

BUTTON 12,1:RETURN

Get. del taT. and.Time. Steps:

T*="Enter time step t.': TS$=*Now many time steps?' ' max del taT and min Hcydes

UINDOU 3,,(250,22)-(505,132),-4: CALL TEXTFONT(l)

CALL TEXTSIZE(12): CALL MOVET0<5,26): PRINT 'Enter tirae step (max. shown)': CALL TEXTSIZE(12)

EDIT FIELD l,T$,(5,30)-(250,45)

CALL TEXTSIZE(12): CALL M0VET0<5,61): PRINT 'How many time steps?': CALL TEXTSI2EU2)

EDIT FIELD 2,TS$,(5,65)-(250,80): EDIT FIELD 1

BUTTON 1,1,'OK',(200,84)-(250,102)

i=l

loop:

d=D!ALOG<0)

IF d=l OR d=6 THEN done 'got OK button or RETURN

IF d=2 THEN i=DIAL0G(2): EDIT FIELD i 'got field selection

IF d=? THEN i=(i MOD 2)41: EDIT FIELD i 'got TAB key

GOTO loop

done: CALL TEXTF0NT(4): CALL TEXTSIZE(9): DeltaT=VAL(EDIT$(D): NumSteps=VAL(EDIT$(2)): UINDOU CLOSE 3

RETURN

BigText:CALL TEXTFOKT(O) :CALL TEXTSIZE< 12): RETURN ' Chicago
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LittleText:CALL TEXTF0NT(1):CALL TEXTSIZE< 9): RETURN ' Geneva

Normal Text: CALL TEXTF0NT(1):CALL TEXTSIZE(10):RETURN ' Geneva

FormatedText:CALL TEXTF0NT(4):CALL TEXTS1ZE(9):RETURN ' Monaco

Start: CR*=CHR*<13): Pi«=4*ATN(l): nl=l: n3=3: n4=4: n=GN*D0F: GOSUB FormatedText

' create status windows

F*='DynFEP.info':OPEN f* AS 111 LEN=40

FIELDM, 2 AS Xl$, 2 AS Yi$, 2 AS X2*, 2 AS Y2*, 30 AS Title*, 2 AS Type*

WINDOW 2,'DynFEP Input/Output Window" , ( 14 ,61 )-<512,263) , 1

WINDOW 1,'DynFEP Status Window", (4, 41)-<424, 161),

1

FOR i=l TO 16: GETUl.i

xl=CVKXl*): yl=CVI(Yl*): x2=CVKX2*): y2=CVKY2*): A*=Title*: kind=CVI(Type*)

WHILE RIGHT*(a*,l)=' ':a*4iFT*(a*,LEN<a*)-l):WEND:BUTTON i ,l,a*,(xl,yl)-(x2,y2),kind

NEXT i:CL0SEm

DIM K«<n,n+l),MII(n,n),Fdll(n),U0ll<n,3),Ull»<n,3),N*<17),E*<19)

F*=PN*+'. nodes' :0PEN F* AS 111 LEN=92

FIELDm,12 AS Flgl*, 4 AS N*(l), 4 AS N*<2), 4 AS N*<3), 4 AS N*(4), 4 AS N*<5), 4 AS N*<6), 3 AS N$(7), 4 AS N*<8), 4 A

S N*<9), 4 AS N*<10), 4 AS N*U1), 8 AS N*<12), 4 AS N$(13), 4 AS N*(14), 4 AS N*<15), 4 AS N*<16), 8 AS N*(17)

F*=PN*+'.elements":OPEN F* AS 112 LEN=94

FIELDS, 6 AS Flg2*,2 AS Lt*,2 AS Rt*,4 AS E*(l),4 AS E*(2),4 AS E*<3),4 AS E*(4),4 AS E*(5),4 AS E*(6),4 AS E*(7),4 AS E

$(8), 4 AS E*<9),4 AS E*<10),4 AS E*(ll),4 AS E*(12),8 AS E*<13),4 AS E*(14),4 AS E*<15),4 AS E*(16),4 AS E*<17),4 AS E*<

18), 8 AS E*<19)

F*=PN*+\displ': OPEN F* AS 113 LEN=24: FIELDS, 8 AS U*,8 AS V*,8 AS Ac*

Load. Global .Matrices: BUTTON 1,2

CALL Retrieve .Matr ix(n, n+1, K»<), PN*+\ K4F.c',n4)

CALL Retrieve.Matr ix(n,n,MI»<),PN*+'.M.c',n4)

CALL Retrieve .Matr ix(n,n3,U0ll<),PN*+".initial',n4)

FOR i=l TO n 'start 'dispP file 3 zero

LSET U*=MKD*(UOH(i,l)):LSET V*=MKD*<U0ll(i ,2)):LSET Ac*=MKD*(U0«(i ,3))

PUTII3,i:NEXT i

BUTTON 1,0

'ft*************************************** debug only

CALL DtsplayMatrix<n,n+l,KIIO, 'Stiffness')

CALL DisplayMatrix(n,n,MI»(),'Mass')

CALL DisplaytiatrixCnjnS.UOUOjMnitial Conditions')

'Get or calculate constants

delta=l/2:alpha=l/4: GOSUB Get. del taT.and.Tirae. Steps

A0=l/<alpha*DeltaT'2):A2=l/(alpha*DeltaT):A3=l/<2*alpha)-l ' calculate constants

A6=DeltaT»(l-delta):A7=delta»DeltaT

FOR Counter=l TO NumSteps ' begin solution loop

Find.Dyn.Force.Mat: BUTTON 2,2 ' status report

GOSUB AssembleForceMat: GOSUB ElementMatrixAssembler

BUTTON 2,1 ' status report

Find.Effective.Mat: BUTTON 3,2 ' also apply BC

FOR i=l TO N:K«(i,n+l)=KII(i,n+l)+Fdll(i): FdH(i)=0 'add in dyn forces and init Fd« for next time step

IF UM<i,l)01 THEN FOR j=l TO N:K8(i ,N+l)=KII(i ,n+l)+MI»(i
,
j ) *<A0*U0*l(

j , 1 ) +A2*U0»<
j , 2) +A3*U0*t< j ,3)) :K**<

i
, j )=Ktt< i ,j)+A0*

MH<i,j):NEXT j
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IF Ul»(i,l)=l THEN GOSUB Essential .B.C: FOR j=l TO n:K»(i ,j)=-(i=j):NEXT j:KI(i ,n+l)=Displ 'set spec'd displacement

NEXT i

BUTTON 3,1 ' status report

Solve: BUTTON 4,2 ' status report

GOSUB Guass: BUTTON 4,1: BUTTON 5,2

FOR i=l TO n ' find V and A vectors and store displacements in U

Ul»(i,l)=K*(i,n+l)

MM i ,3)=A0*<U1»< i ,1)-U0H< i ,l))-A2»U0tt( i ,2)-A3*U0tl< i ,3)

U1IK i ,2)=U0H(
i
,2)+A6*U0#<

i
,3)+A7*Ultt<

i
,3)

LSET U*=MKD1(Ul#(i,l)):LSET W=r1KD*(Ul«<i ,2)):LSET Ac*=MKD$(Ull!(i ,3)):j=i+Counter*n:PUTH3,j ' save to disk

NEXT i: BUTTON 5,1 ' status report

'**«*»****«*****«*»«*«#»«******»**«»»**»* debug only

CALL DisplayMatrix(n,n3,Ultt(), 'Displacement, Velocity, and Acceleration')

UINDOU 2: PRINT USING 'Time step m of m .';counter,NuroSteps

PRINT USING "7 = »».»»"*' Time step = M.M ;T,deltaT: UINDOU 1

'**»«*m»*»»*»»*»»«»**«*»*»**»«»«»******

NextTiraeStep: BUTTON 6,2: UINDOU OUTPUT 2 ' status report

T=T+deltaT: UINDOU 1

FOR i=l TO n: FOR j=l TO 3: UO»(i,j)=Ulll(i,j): NEXT j,i ' intialize

CALL Retrieve .Matrix(n,n+l,K»0,FW+'.K&F.c',n4)

BUTTON 6,1 'status report

NEXT Counter

CLOSE: UINDOU CLOSE 1: UINDOU CLOSE 2: CHAIN 'DynFEP.menu': END

'
Subprograms Below
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A subset of the following SUB-Programs are used in most of the DynFEP programs:

Sub-Programs Below

SUB Retrieve.Matrix<r,c,A»0,F*,k) STATIC

IF UBOUND(AI,lXr OR UB0UND(AI,2Xc THEN PRINT CHR$<7) "Fatal error": STOP

RL=c*8: OPEN F* AS Ik LEN=RL: FIELDttk.RL AS CM
FOR i-1 TO r: GETIk.i: FOR j=l TO c

B$=MD$(AA*,8*<j-l)*l,8): A»<i,j)=CVD<B$)

NEXT j , i : CLOSEIk

END SUB

SUB Store.Matrix(r,c,AIO,F*,k) STATIC

IF UBOUND(AI,lXr OR UB0UND(AI,2Xc THEN PRINT CHR*(7)'Fatal error": STOP

RL=c*8: OPEN F* AS Ik LEN=RL: FIELDIk.RL AS AA$

FOR i=l TO r: B*=": FOR j=l TO c

H=B$4MKW<AI<i,j))

NEXT j: LSET AA$=B$: PLTTttk , i : NEXT i: CLOSE Ik

END SUB

SUB Display.Matrix<Row,Co1,AM2),T*) STATIC

CALL TEXTFONT(l): CALL TEXTSIZE<9): PRINT 1%

FOR i=l TO Row: FOR j=l TO Col

PRINT USING "+«.»#"" ';A»(i,j);

NEXT j: PRINT: NEXT i: PRINT

INPUT 'Press 'RETURN' to continue';a$

END SUB

SUB Mat.tiroes.Mat<rA,cB,cArB,AI<2),BK2),RI<2)) STATIC

'[A] * [B] = [R]

'rA = Irows in [A] cArB = Icols in [AI and Irows in [Bl

'cB = Icols in [Bl IR] is dimensioned rA X cB

FOR i=l TO rA: FOR j=l TO cB: FOR k=l TO cArB

RI(i,j)=RI(i,j)+AI(i,k)*BI(k,j)

NEXT k,j,i

END SUB

SUB MatTrans.times.Mat(cA,cB,rArB,AI(2),BI(2),RI(2)) STATIC

'[A transpose] I [Bl = [R]

'cA = Icols in [A3 rArB = Irows in [A] and Irows in [Bl

'cB = Icols in [Bl [R] is dimensioned cA X cB

FOR i=l TO cA: FOR j=l TO cB: FOR k=l TO rArB

RI<i,j)=RI(i,jXAI(k,i)*BI<k,j)

NEXT k,j,i

END SUB

SUB Mat.plus.Mat(r,c,Cll,AI(2),C2l,BI(2)) STATIC

'C1*[A] + C2»[BI = result stored in [A]

FOR i=l TO r: FOR j=l TO c: AKi ,j)=Cll*AKi ,j)+C2l»BI(i ,j): NEXT j,i

END SUB

SUB Invert.Matrix(n,AI(2)) STATIC
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'Takes [A] * [Al*-1 = [I] AND changes TO [I] » [AI'-l = [AI'-l (based on Guass elimination)

' [AI'-l replaces [A]

DIM M<n,n): FOR i=l TO n: I#(i,i)=l: NEXT i 'identity matrix

FOR i=l TO n: m#=Ai< i , i ) : FOR j=l TO n: Ai<i,j)=At<i,j)/n#i HKi,j)=It<i,j)/iifi NEXT j

FOR k=l TO n: IF KOi THEN mJNAIKk.i): FOR j=l TO n: A*(K,j)=All<k,j)-A»<i ,j)*m«: I#<K,j)=Jl<K,j)-Ii<i,j)*t! NEXT j

NEXT k,i

FOR i=l TO n: FOR j=l TO n: AIKi ,j)=M<i ,j): NEXT j , i : ERASE in ' store inverse in All

END SUB

SUB Determinant<n,AH(2>,Det) STATIC

'Uses pivital condensation to find the determinant of [AH]

Mult=l: Sign=l

UHILE n=)2

i=l: UHILE A«<
i

, 1 >=0 AND i<=n: i=i + l: WEND 'check for zero in first column, then correct

IF i)n THEN Det=0: GOTO Finished '1st col has all zeros

IF i>l THEN Sign=-Sign: FOR j=l TO n: SUAP AI<l,j),AI<i,j): NEXT j 'swap rows and change sign

MulWtaH/AKl,l)*<B-2)

FOR i=2 TO n: FOR j=2 TO n: AIKi ,j)=AII(l,l)«AI»(i ,j)-A«(l,j)«AII(i,l): NEXT j,i

FOR i=l TO n-1: FOR j=l TO n-1: AKi ,j)=AI»(i+l,j+l): NEXT j,j

n=n-l

UEND

Det=Sign*Mu1t*AH<l,l)

Finished:

END SUB
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